论文标题
关于在多分散模型GlassFormer中的直径选择:确定性或随机性?
On the choice of diameters in a polydisperse model glassformer: deterministic or stochastic?
论文作者
论文摘要
在基于粒子的计算机模拟中,粒子直径$σ=σ_1,\ dots,\ dots,σ_n$具有$ n $颗粒的系统的目的是为了近似于所需的分布密度$ f $与相应的直方图。实现此目的的一种方法是从密度$ f $中随机绘制每个直径。我们将此随机方案称为模型$ \ MATHCAL {S} $。另外,可以应用确定性方法,将适当的$ N $值分配给直径。我们将此方法称为模型$ \ MATHCAL {D} $。我们表明,尤其是对于低温下的玻璃动力学,无论选择模型$ \ MATHCAL {S} $还是模型$ \ Mathcal {D} $都重要。使用分子动力学计算机仿真,我们研究了一个三维多二分散的非添加软球系统,其$ f(s)\ sim s^{ - 3} $。使用掉期蒙特卡洛法以在非常低的温度下获得平衡的样品。我们表明,对于模型$ \ MATHCAL {S} $,由于直径引起的淬火障碍$σ$引起的样品对样品的波动可以通过有效的包装分数来解释。模型$ \ MATHCAL {S} $中的动态敏感性可以分为两个术语:一个具有热性质的术语,可以通过模型$ \ Mathcal {D} $的敏感性来识别,而另一种来自$σ$的疾病。在低温下,后者的贡献是动态敏感性中的主导期限。
In particle-based computer simulations of polydisperse glassforming systems, the particle diameters $σ= σ_1, \dots, σ_N$ of a system with $N$ particles are chosen with the intention to approximate a desired distribution density $f$ with the corresponding histogram. One method to accomplish this is to draw each diameter randomly from the density $f$. We refer to this stochastic scheme as model $\mathcal{S}$. Alternatively, one can apply a deterministic method, assigning an appropriate set of $N$ values to the diameters. We refer to this method as model $\mathcal{D}$. We show that especially for the glassy dynamics at low temperatures it matters whether one chooses model $\mathcal{S}$ or model $\mathcal{D}$. Using molecular dynamics computer simulation, we investigate a three-dimensional polydisperse non-additive soft-sphere system with $f(s) \sim s^{-3}$. The Swap Monte Carlo method is employed to obtain equilibrated samples at very low temperatures. We show that for model $\mathcal{S}$ the sample-to-sample fluctuations due to the quenched disorder imposed by the diameters $σ$ can be explained by an effective packing fraction. Dynamic susceptibilities in model $\mathcal{S}$ can be split into two terms: One that is of thermal nature and can be identified with the susceptibility of model $\mathcal{D}$, and another one originating from the disorder in $σ$. At low temperatures the latter contribution is the dominating term in the dynamic susceptibility.