论文标题
抛物线模量空间上的重言式捆绑:Euler特征和Hecke对应关系
Tautological bundles on parabolic moduli spaces: Euler characteristics and Hecke correspondences
论文作者
论文摘要
我们在平滑曲线上计算了稳定抛物线束的模量空间上相关矢量束的欧拉特征。我们的方法基于从几何不变理论,某些迭代的残基微积分和重言式Hecke对应关系的壁交化技术。我们的工作是由Teleman和Woodward在Moduli堆栈的K理论类索引上的结果激励的。
We calculate the Euler characteristic of associated vector bundles over the moduli spaces of stable parabolic bundles on smooth curves. Our method is based on a wall-crossing technique from Geometric Invariant Theory, certain iterated residue calculus and the tautological Hecke correspondence. Our work was motivated by the results of Teleman and Woodward on the index of K-theory classes on moduli stacks.