论文标题

要理解和减轻异质联邦学习中的维度崩溃

Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning

论文作者

Shi, Yujun, Liang, Jian, Zhang, Wenqing, Tan, Vincent Y. F., Bai, Song

论文摘要

联邦学习旨在跨不同客户培训模型,而无需共享数据以考虑隐私方面。但是,此学习范式的一个主要挑战是{\ em数据异质性}问题,它是指各个客户之间本地数据分布之间的差异。为了解决这个问题,我们首先研究数据异质性如何影响全球汇总模型的表示。有趣的是,我们发现异质数据导致遭受严重{\ em维崩溃}的全球模型,其中表示倾向于驻留在较低维度的空间而不是环境空间中。此外,我们在每个客户的本地训练的模型上观察到类似的现象,并推断出全局模型上的维度崩溃是从本地模型继承的。此外,我们从理论上分析了梯度流动动力学,以阐明数据异质性如何导致局部模型的尺寸崩溃。为了解决数据异质性引起的这个问题,我们提出了{\ sc fedDecorr},这是一种新型方法,可以有效地减轻联合学习中的维度崩溃。具体而言,{\ sc fedDecorr}在本地培训期间应用一个正规化项,鼓励不同的表示形式的维度不相关。 {\ sc fedDecorr}是实现友好和计算效率的,对标准基准数据集的基准产生了一致的改进。代码:https://github.com/bytedance/feddecorr。

Federated learning aims to train models collaboratively across different clients without the sharing of data for privacy considerations. However, one major challenge for this learning paradigm is the {\em data heterogeneity} problem, which refers to the discrepancies between the local data distributions among various clients. To tackle this problem, we first study how data heterogeneity affects the representations of the globally aggregated models. Interestingly, we find that heterogeneous data results in the global model suffering from severe {\em dimensional collapse}, in which representations tend to reside in a lower-dimensional space instead of the ambient space. Moreover, we observe a similar phenomenon on models locally trained on each client and deduce that the dimensional collapse on the global model is inherited from local models. In addition, we theoretically analyze the gradient flow dynamics to shed light on how data heterogeneity result in dimensional collapse for local models. To remedy this problem caused by the data heterogeneity, we propose {\sc FedDecorr}, a novel method that can effectively mitigate dimensional collapse in federated learning. Specifically, {\sc FedDecorr} applies a regularization term during local training that encourages different dimensions of representations to be uncorrelated. {\sc FedDecorr}, which is implementation-friendly and computationally-efficient, yields consistent improvements over baselines on standard benchmark datasets. Code: https://github.com/bytedance/FedDecorr.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源