论文标题
反对对抗性学习,逆无知的卡尔曼过滤器
Counter-Adversarial Learning with Inverse Unscented Kalman Filter
论文作者
论文摘要
在反对反对的系统中,为了推断智能对抗者的战略,辩护人需要认知地感知对手对后者收集的信息。关于该问题的先验工作采用线性高斯州空间模型,并通过设计逆随机过滤器来解决此反向认知问题。但是,实际上,反对抗系统通常是高度非线性的。在本文中,我们通过将逆认知作为非线性高斯州空间模型来解决这种情况,其中对手采用无知的卡尔曼过滤器(UKF)来估计辩护人的状态,并减少了线性化错误。为了估算对手对防守者的估计,我们提出并开发了UKF倒数(IUKF)系统。然后,我们在均方界定意义上获得了IUKF随机稳定性的理论保证。多个实际应用的数值实验表明,IUKF的估计误差收敛,并紧随递归cramér-rao下限。
In counter-adversarial systems, to infer the strategy of an intelligent adversarial agent, the defender agent needs to cognitively sense the information that the adversary has gathered about the latter. Prior works on the problem employ linear Gaussian state-space models and solve this inverse cognition problem by designing inverse stochastic filters. However, in practice, counter-adversarial systems are generally highly nonlinear. In this paper, we address this scenario by formulating inverse cognition as a nonlinear Gaussian state-space model, wherein the adversary employs an unscented Kalman filter (UKF) to estimate the defender's state with reduced linearization errors. To estimate the adversary's estimate of the defender, we propose and develop an inverse UKF (IUKF) system. We then derive theoretical guarantees for the stochastic stability of IUKF in the mean-squared boundedness sense. Numerical experiments for multiple practical applications show that the estimation error of IUKF converges and closely follows the recursive Cramér-Rao lower bound.