论文标题

$ l_1 $ -norm Ball in $ \ mathbb {z}^d $中的随机步行位置的枚举

Enumeration of Random Walk Positions in $L_1$-norm ball in $\mathbb{Z}^d$

论文作者

Shi, Luchen, McCance, Will, Zeng, Hongjie

论文摘要

在本文中,我们主要关注的是推导通用公式,以计算$ n $ step随机步行的可能位置,以$ \ mathbb {z}^d $在每个步骤中具有单位长度,我们将其表示为$ | p_n^{d} | $。对于我们的结果,我们首先提出了计数公式的复发关系:$ | p_n^{d+1} | = | p_n^d | + 2 \ sum_ {k = 0}^{n-1} | p_k^d | $。接下来,我们建议使用生成函数和Faulhaber的公式推导$ | p_n^{d} | $的明确公式的两种方法。最后,我们在公式的矩阵表示中达到了主要定理。

In this paper, we mainly concerned about deriving the general formula to count the possible positions of $n$ step random walk in $\mathbb{Z}^d$ with unit length in each step, which we denoted as $|P_n^{d}|$. For our results, we firstly propose a recurrence relation of the counting formula: $|P_n^{d+1}| = |P_n^d| + 2\sum_{k=0}^{n-1} |P_k^d|$. Next, we propose two methods in deriving the explicit formula of $|P_n^{d}|$ using generating functions and Faulhaber's formula. Finally, we reached our main theorem in the matrix representation of our formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源