论文标题

大规模的机器学习协助探索整个材料空间

Large-scale machine-learning-assisted exploration of the whole materials space

论文作者

Schmidt, Jonathan, Hoffmann, Noah, Wang, Hai-Chen, Borlido, Pedro, Carriço, Pedro J. M. A., Cerqueira, Tiago F. T., Botti, Silvana, Marques, Miguel A. L.

论文摘要

最近出现了Crystal-Graph注意力网络,是预测热力学稳定性和来自未删除的晶体结构的材料特性的非凡工具。然而,对200万材料进行培训的以前的网络表现出了强烈的偏见,这些偏见源自可用数据中代表性不足的化学元素和结构性原型。我们解决了该问题计算其他数据,以在化学和晶体对称空间之间提供更好的平衡。接受此新数据训练的水晶图网络表明了前所未有的概括精度,并允许对无机化合物的整个空间进行可靠,加速探索。我们应用了这个通用网络来执行机器学习辅助高通量材料搜索,包括2500个二进制和三元结构原型,并跨越约10亿种化合物。在使用密度功能理论验证之后,我们在热力学稳定性凸面上的总材料中揭示了额外的材料,距离船体小于50 MeV/原子的〜150000化合物。再次结合机器学习和AB-Initio方法,我们最终将应用的材料评估为超导体,超级材料,我们寻找具有较大间隙变形电位的候选物,发现了几种具有这些特性极高值的化合物。

Crystal-graph attention networks have emerged recently as remarkable tools for the prediction of thermodynamic stability and materials properties from unrelaxed crystal structures. Previous networks trained on two million materials exhibited, however, strong biases originating from underrepresented chemical elements and structural prototypes in the available data. We tackled this issue computing additional data to provide better balance across both chemical and crystal-symmetry space. Crystal-graph networks trained with this new data show unprecedented generalization accuracy, and allow for reliable, accelerated exploration of the whole space of inorganic compounds. We applied this universal network to perform machine-learning assisted high-throughput materials searches including 2500 binary and ternary structure prototypes and spanning about 1 billion compounds. After validation using density-functional theory, we uncover in total 19512 additional materials on the convex hull of thermodynamic stability and ~150000 compounds with a distance of less than 50 meV/atom from the hull. Combining again machine learning and ab-initio methods, we finally evaluate the discovered materials for applications as superconductors, superhard materials, and we look for candidates with large gap deformation potentials, finding several compounds with extreme values of these properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源