论文标题

界面中的界面的产生和运动

Generation and motion of interfaces in a mass-conserving reaction-diffusion system

论文作者

Miller, Pearson W., Fortunato, Daniel, Novaga, Matteo, Shvartsman, Stanislav Y., Muratov, Cyrill B.

论文摘要

具有非局部约束的反应扩散模型自然出现是细胞内信号传导的构造散装模型的限制案例。在本文中,分析了弯曲膜上细胞极化的最小,质量持续的模型,以缓慢的表面扩散极限。使用形式的渐近学和变化的计算工具,我们研究了该系统在三个动态时间尺度上的特征性波插行为。在短时间内,在适当的条件下建立了分隔高浓度域的界面的生成。表明中间时间尺度动力学会导致这些域的均匀生长或缩小到由全局参数固定的尺寸。最后,长时间的动力学减小到可能导致多接口稳态解决方案的区域呈现区域曲率流。这些结果为研究生物学相关几何形状中的细胞极化和相关现象提供了基础。

Reaction-diffusion models with nonlocal constraints naturally arise as limiting cases of coupled bulk-surface models of intracellular signalling. In this paper, a minimal, mass-conserving model of cell-polarization on a curved membrane is analyzed in the limit of slow surface diffusion. Using the tools of formal asymptotics and calculus of variations, we study the characteristic wave-pinning behavior of this system on three dynamical timescales. On the short timescale, generation of an interface separating high- and low-concentration domains is established under suitable conditions. Intermediate timescale dynamics is shown to lead to a uniform growth or shrinking of these domains to sizes which are fixed by global parameters. Finally, the long time dynamics reduces to area-preserving geodesic curvature flow that may lead to multi-interface steady state solutions. These results provide a foundation for studying cell polarization and related phenomena in biologically relevant geometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源