论文标题

经济驱动的自适应交通信号控制

Economic-Driven Adaptive Traffic Signal Control

论文作者

Jiang, Shan, Huang, Yufei, Jafari, Mohsen, Jalayer, Mohammad

论文摘要

借助新兴的连接车辆技术和智能道路,对智能自适应交通信号控制的需求比以往任何时候都要多。本文提出了一种新型的经济驱动的自适应交通信号控制(EATSC)模型,该模型具有超级控制变量 - 在信号交叉点上经济学中定义的流量信号控制中定义的利率。 EATSC使用连续的复合功能,可捕获车辆总数和每辆车的累积等待时间来计算不同方向的罚款。计算的罚款随着等待时间而增长,用于信号控制决策。每个交叉路口分别根据交通模式分别为不同方向调整利率和信号长度的两个智能代理分配。该问题被提出为马尔可夫决策过程(MDP)问题,以减少拥塞,并利用两种代理双决斗深度Q网络(DDDQN)来解决该问题。根据最佳政策,代理商可以选择最佳利率和信号时间,以最大程度地减少交通拥堵的可能性。为了评估我们方法的优势,开发了具有经典四腿信号交叉点的Vissim模拟模型。结果表明,所提出的模型足以在交叉路口保持健康的交通流量。

With the emerging connected-vehicle technologies and smart roads, the need for intelligent adaptive traffic signal controls is more than ever before. This paper proposes a novel Economic-driven Adaptive Traffic Signal Control (eATSC) model with a hyper control variable - interest rate defined in economics for traffic signal control at signalized intersections. The eATSC uses a continuous compounding function that captures both the total number of vehicles and the accumulated waiting time of each vehicle to compute penalties for different directions. The computed penalties grow with waiting time and is used for signal control decisions. Each intersection is assigned two intelligent agents adjusting interest rate and signal length for different directions according to the traffic patterns, respectively. The problem is formulated as a Markov Decision Process (MDP) problem to reduce congestions, and a two-agent Double Dueling Deep Q Network (DDDQN) is utilized to solve the problem. Under the optimal policy, the agents can select the optimal interest rates and signal time to minimize the likelihood of traffic congestion. To evaluate the superiority of our method, a VISSIM simulation model with classic four-leg signalized intersections is developed. The results indicate that the proposed model is adequately able to maintain healthy traffic flow at the intersection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源