论文标题
在松弛时间近似中,巨大的动力学理论的远距离均衡吸引子
Far-from-equilibrium attractors for massive kinetic theory in the relaxation time approximation
论文作者
论文摘要
我们研究了通过计算一组粒子分布函数的大量矩的时间进化来研究非统一动力学理论的早期和晚期吸引子。为此,我们利用先前获得的精确溶液在松弛时间近似中的0+1D增强不变的巨大玻尔兹曼方程。我们通过使用逼真的质量和温度依赖性的松弛时间来扩展非符号系统的先前吸引子研究,并明确计算改变初始动量空间各向异性和初始化时间对大型积分矩的时间演变的影响。我们的发现与先前的研究是一致的,该研究发现纵向压力有一个吸引者,但对剪切和散装粘性校正却不是一个吸引者。我们进一步提供证据表明,晚期和早期吸引子在一个粒子分布函数的所有时刻都存在,该函数包含大于纵向动量平方的一种力量。
We investigate whether early and late time attractors for non-conformal kinetic theories exist by computing the time-evolution of a large set of moments of the one-particle distribution function. For this purpose we make use of a previously obtained exact solution of the 0+1D boost-invariant massive Boltzmann equation in relaxation time approximation. We extend prior attractor studies of non-conformal systems by using a realistic mass- and temperature-dependent relaxation time and explicitly computing the effect of varying both the initial momentum-space anisotropy and initialization time on the time evolution of a large set of integral moments. Our findings are consistent with prior studies, which found that there is an attractor for the scaled longitudinal pressure, but not for the shear and bulk viscous corrections separately. We further present evidence that both late- and early-time attractors exist for all moments of the one-particle distribution function that contain greater than one power of the longitudinal momentum squared.