论文标题
在$a_α$和$rd_α$矩阵上
On the $A_α$ and $RD_α$ matrices over certain groups
论文作者
论文摘要
有限组的$ g = p(ω)$ $ g = p(ω)$ $ω$是顶点套装$ω$的图形,两个dertices $ u,v \ inω$在ω$中形成边缘,并且仅当一个是另一个是另一个的积分幂时。令$ d(g)$,$ a(g)$,$ rt(g)$和$ rd(g)$表示对角度矩阵,邻接矩阵,顶点互惠变速器的对角线矩阵和功率图$ G $的Harary Matrix。然后,$a_α$和$rd_α$ $ g $的矩阵定义为$a_α(g)=αd(g) +(1-α)a(g)$和$rd_α(g)=αrt(g) +(1-α)rd(g)rd(g)$。在本文中,我们确定了$a_α$的特征值和$rd_α$矩阵的组$ \ mathcal {g} = \ langle s,r \,:r^{2^kp} = s^s^2 = e,此外,我们计算其远处和提升距离度序列,度量维度和强度度度。
The power graph $G = P(Ω)$ of a finite group $Ω$ is a graph with the vertex set $Ω$ and two vertices $u, v \in Ω$ form an edge if and only if one is an integral power of the other. Let $D(G)$, $A(G)$, $RT(G)$, and $RD(G)$ denote the degree diagonal matrix, adjacency matrix, the diagonal matrix of the vertex reciprocal transmission, and Harary matrix of the power graph $G$ respectively. Then the $A_α$ and $RD_α$ matrices of $G$ are defined as $A_α(G) = αD(G) + (1-α)A(G)$ and $RD_α(G) = αRT(G) + (1-α)RD(G)$. In this article, we determine the eigenvalues of $A_α$ and $RD_α$ matrices of the power graph of group $ \mathcal{G} = \langle s,r \, : r^{2^kp} = s^2 = e,~ srs^{-1} = r^{2^{k-1}p-1}\rangle$. In addition, we calculate its distant and detotar distance degree sequences, metric dimension, and strong metric dimension.