论文标题
HPC存储服务使用各种AutoEncoder引导异步贝叶斯优化的自动传动
HPC Storage Service Autotuning Using Variational-Autoencoder-Guided Asynchronous Bayesian Optimization
论文作者
论文摘要
针对特定应用程序量身定制的分布式数据存储服务在高性能计算(HPC)社区中越来越流行,作为解决I/O和存储挑战的一种方式。这些服务提供各种特定的接口,语义和数据表示。他们还公开了许多调整参数,使用户很难找到适合给定的工作负载和平台的最佳配置。 为了解决这个问题,我们开发了一种新型的自动辅助引导的异步贝叶斯优化方法来调整HPC存储服务参数。我们的方法使用转移学习来利用先前的调整结果,并使用动态更新的替代模型以系统的方式探索大型参数搜索空间。 我们在DeepHyper开源框架内实施方法,并将其应用于Argonne的Theta SuperCupture机上高能物理工作流的自动传动。我们表明,我们的转移学习方法可以在随机搜索中启用超过$ 40 \ times $搜索的速度,而当不使用转移学习时,$ 2.5 \ times $ tos $ 10 \ times $ speedup。此外,我们表明我们的方法与最先进的自动调整框架相提并论,并且在资源利用和并行功能方面的表现优于它们。
Distributed data storage services tailored to specific applications have grown popular in the high-performance computing (HPC) community as a way to address I/O and storage challenges. These services offer a variety of specific interfaces, semantics, and data representations. They also expose many tuning parameters, making it difficult for their users to find the best configuration for a given workload and platform. To address this issue, we develop a novel variational-autoencoder-guided asynchronous Bayesian optimization method to tune HPC storage service parameters. Our approach uses transfer learning to leverage prior tuning results and use a dynamically updated surrogate model to explore the large parameter search space in a systematic way. We implement our approach within the DeepHyper open-source framework, and apply it to the autotuning of a high-energy physics workflow on Argonne's Theta supercomputer. We show that our transfer-learning approach enables a more than $40\times$ search speedup over random search, compared with a $2.5\times$ to $10\times$ speedup when not using transfer learning. Additionally, we show that our approach is on par with state-of-the-art autotuning frameworks in speed and outperforms them in resource utilization and parallelization capabilities.