论文标题

掌握道路网络的空间图预测

Mastering Spatial Graph Prediction of Road Networks

论文作者

Anagnostidis, Sotiris, Lucchi, Aurelien, Hofmann, Thomas

论文摘要

准确地从卫星图像预测道路网络需要全球对网络拓扑的了解。我们建议通过引入基于图形的框架来捕获此类高级信息,该框架使用增强学习(RL)方法模拟图形边序列的序列。特别是,给定与卫星图像关联的部分生成的图,RL代理提名修改,以最大化累积奖励。与往往更限于常用替代损失的标准监督技术相反,这些奖励可以基于各种复杂的,潜在的非连续的,感兴趣的指标。这会产生更多的力量和灵活性,以编码与问题有关的知识。几个基准数据集的经验结果表明,在使用基于树的搜索时,对图形拓扑的高度推理提高了性能,并提高了高级推理。我们通过为此任务引入新的合成基准数据集,进一步强调了在实质性遮挡下的优势。

Accurately predicting road networks from satellite images requires a global understanding of the network topology. We propose to capture such high-level information by introducing a graph-based framework that simulates the addition of sequences of graph edges using a reinforcement learning (RL) approach. In particular, given a partially generated graph associated with a satellite image, an RL agent nominates modifications that maximize a cumulative reward. As opposed to standard supervised techniques that tend to be more restricted to commonly used surrogate losses, these rewards can be based on various complex, potentially non-continuous, metrics of interest. This yields more power and flexibility to encode problem-dependent knowledge. Empirical results on several benchmark datasets demonstrate enhanced performance and increased high-level reasoning about the graph topology when using a tree-based search. We further highlight the superiority of our approach under substantial occlusions by introducing a new synthetic benchmark dataset for this task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源