论文标题
palatini $ {\ cal {r}}^2 $通货膨胀的问题:加热温度的界限
Issues in Palatini ${\cal{R}}^2$ inflation: Bounds on the Reheating Temperature
论文作者
论文摘要
我们考虑$ {\ cal {r}}^2 $ - 在palatini重力中,在存在与重力的标量场的情况下。这些理论,在爱因斯坦的框架中,对于一个标量字段$ h $,与$ k $ - 通货膨胀模型共享共同的功能。我们将这种形式主义应用于单场通货膨胀模型的研究,其潜力是单一的单个通货膨胀模型,即$ v \ sim h^{n} $,$ n $ a n $ a正面甚至整数。我们还研究了HIGGS模型非最少耦合到重力。 $ {\ cal {r}}^2 $ - term耦合为重力为$ \simα{\ cal {r}}^2 $,$α$ contand,即时重新加热温度$ t_ {ins {ins} $,由$ T_ {\,α^{1/4}} $,上限为大$α$饱和。对于如此大的$α$,需要超越慢速来计算宇宙学参数,其中包括通货膨胀的结尾,确定了$ t_ {ins} $。实际上,随着充气量在通货膨胀点结束时滚动,速度的四分之一(在palatini重力中不可避免的)起着重要作用,无法忽略。 $α$和其他参数的值受到宇宙学数据的约束,在通货膨胀量表上设置界限$ m_ {s} \ sim 1/\sqrtα$以及宇宙的重新加热温度。
We consider ${\cal{R}}^2$-inflation in Palatini gravity, in the presence of scalar fields coupled to gravity. These theories, in the Einstein frame, and for one scalar field $h$, share common features with $K$ - inflation models. We apply this formalism for the study of single-field inflationary models, whose potentials are monomials, $ V \sim h^{n} $, with $ n $ a positive even integer. We also study the Higgs model non-minimally coupled to gravity. With ${\cal{R}}^2$-terms coupled to gravity as $\sim α{\cal{R}}^2 $, with $α$ constant, the instantaneous reheating temperature $T_{ins}$, is bounded by $ T_{ins} \leq { 0.290 \, m_{Planck}} / {\, α^{1/4}} $, with the upper bound being saturated for large $α$. For such large $α$ need go beyond slow-roll to calculate reliably the cosmological parameters, among these the end of inflation through which $T_{ins}$ is determined. In fact, as inflaton rolls towards the end of inflation point, the quartic in the velocity terms, unavoidable in Palatini gravity, play a significant role and can not be ignored. The values of $α$, and other parameters, are constrained by cosmological data, setting bounds on the inflationary scale $M_{s} \sim 1/\sqrtα$ and the reheating temperature of the Universe.