论文标题

QUEEGNET:用于生物信号处理的量子AI

quEEGNet: Quantum AI for Biosignal Processing

论文作者

Koike-Akino, Toshiaki, Wang, Ye

论文摘要

在本文中,我们介绍了一个新兴的量子机学习(QML)框架,以帮助经典的深度学习方法用于生物信号处理应用。具体而言,我们提出了一个杂交量子古典神经网络模型,该模型将变异量子电路(VQC)集成到电脑电图(EEG)(EEG),肌电图(EMG)和电皮质图(ECOG)分析的深神经网络(DNN)中。我们证明了拟议的量子神经网络(QNN)达到了最先进的性能,而可训练的参数的数量则保持在VQC中。

In this paper, we introduce an emerging quantum machine learning (QML) framework to assist classical deep learning methods for biosignal processing applications. Specifically, we propose a hybrid quantum-classical neural network model that integrates a variational quantum circuit (VQC) into a deep neural network (DNN) for electroencephalogram (EEG), electromyogram (EMG), and electrocorticogram (ECoG) analysis. We demonstrate that the proposed quantum neural network (QNN) achieves state-of-the-art performance while the number of trainable parameters is kept small for VQC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源