论文标题
热力学不确定性定理
The Thermodynamic Uncertainty Theorem
论文作者
论文摘要
热力学不确定性关系(TURS)表达了通过平均熵产生功能的任何热力学电流的精度(逆缩放方差)之间的基本权衡。依靠纯粹的变异论点,我们通过在时间对称控制的计算的一般框架内纳入和分析较高的熵产生累积累积累积物的影响来显着扩展这些不平等。这使我们能够为实现最小缩放方差的电流得出确切的表达,为此,TUR结合到了我们将热力学不确定性定理(TUT)命名的相等性。重要的是,最小缩放方差电流和TUT都是随机熵产生的功能,因此保留了其较高力矩的影响。特别是,我们的结果表明,除了平均水平之外,熵生产分布的较高力矩对任何电流的精度都有重大影响。这是通过对掉期和重置计算进行彻底的数值分析来明确的,该计算将TUT与先前的广义TUR进行了定量比较。我们的结果表明了如何在先前建立的边界之间插值以及如何在不同非平衡状态下识别最相关的TUR界限。
Thermodynamic uncertainty relations (TURs) express a fundamental tradeoff between the precision (inverse scaled variance) of any thermodynamic current by functionals of the average entropy production. Relying on purely variational arguments, we significantly extend these inequalities by incorporating and analyzing the impact of higher statistical cumulants of entropy production within a general framework of time-symmetrically controlled computation. This allows us to derive an exact expression for the current that achieves the minimum scaled variance, for which the TUR bound tightens to an equality that we name Thermodynamic Uncertainty Theorem (TUT). Importantly, both the minimum scaled variance current and the TUT are functionals of the stochastic entropy production, thus retaining the impact of its higher moments. In particular, our results show that, beyond the average, the entropy production distribution's higher moments have a significant effect on any current's precision. This is made explicit via a thorough numerical analysis of swap and reset computations that quantitatively compares the TUT against previous generalized TURs. Our results demonstrate how to interpolate between previously-established bounds and how to identify the most relevant TUR bounds in different nonequilibrium regimes.