论文标题
特征值支队,BBP过渡和布朗运动的约束
Eigenvalue detachment, BBP transition and constrained Brownian motion
论文作者
论文摘要
我们从位于各种物理性质的凸边界附近的路径集合中的波动缩放方面讨论了特征值支队的转变。我们以数字考虑从高斯(Gaussian)到tracy-widom缩放的BBP样(Baik-ben唤醒)的过渡,用于在几个统计系统中的波动缩放,用于规范和微型统一组合,并在每种情况下识别相应的控制参数。特别是,对于位于部分可渗透半圆附近的路径的固定路径长度(微型炮台)集合,该过渡发生在通透性的临界值处。讨论了radial截止性的jakiw-teitelbom(JT)重力,讨论了tracy-widom制度和类似BBP的波动转变,并具有径向截止的截止性,这反过来又将其解释为固定长度长度长度长度长度的固定长度的几何晶格轨迹,在有效的横向磁场中,充电粒子的轨迹。
We discuss the eigenvalue detachment transition in terms of scaling of fluctuations in ensembles of paths located near convex boundaries of various physical nature. We consider numerically the BBP-like (Baik-Ben Arous-Péché) transition from the Gaussian to the Tracy-Widom scaling of fluctuations in several statistical systems for both canonical and microcanonical ensembles and identify the corresponding control parameter in each case. In particular, for fixed path length (microcanonical) ensemble of paths located in the vicinity of a partially permeable semicircle, the transition occurs at the critical value of a permeability. The Tracy-Widom regime and the BBP-like transition for fluctuations are discussed in terms of the Jakiw-Teitelbom (JT) gravity with a radial cutoff which, in turn, has an interpretation as a ensemble of fixed length world-line geometrically constrained trajectories of a charged particle in an effective transversal magnetic field.