论文标题
在calabi-yau混合动力模型的属-0属中
On genus-0 invariants of Calabi-Yau hybrid models
论文作者
论文摘要
我们计算了卡拉比YAU测量线性sigma模型(GLSM)的杂化相的零属,即在某些碱基上纤维的Landau-Ginzburg Orbifolds的相位。这些相关因子是Gromov-Witten和FJRW不变的概括。利用先前对GLSM的球体和半球分区函数的结构进行评估时,我们从GLSM计算中提取I功能和J功能。 J功能是相关器的生成函数。我们使用混合模型的字段理论描述来识别这些相关器中插入的状态。我们计算不变式,以示例单参数杂交模型的示例。我们的结果与镜像对称性和FJRW理论的结果相匹配。
We compute genus zero correlators of hybrid phases of Calabi-Yau gauged linear sigma models (GLSMs), i.e. of phases that are Landau-Ginzburg orbifolds fibered over some base. These correlators are generalisations of Gromov-Witten and FJRW invariants. Using previous results on the structure of the of the sphere- and hemisphere partition functions of GLSMs when evaluated in different phases, we extract the I-function and the J-function from a GLSM calculation. The J-function is the generating function of the correlators. We use the field theoretic description of hybrid models to identify the states that are inserted in these correlators. We compute the invariants for examples of one- and two-parameter hybrid models. Our results match with results from mirror symmetry and FJRW theory.