论文标题

LOPR:使用生成模型的潜在占用预测

LOPR: Latent Occupancy PRediction using Generative Models

论文作者

Lange, Bernard, Itkina, Masha, Kochenderfer, Mykel J.

论文摘要

环境预测框架对于自动驾驶汽车来说是不可或缺的,可以在动态环境中安全导航。激光雷达产生的占用网格图(L-ogm)提供了强大的鸟类眼景场景表示,可促进联合场景预测而不依赖手动标记的情况,这与常用的轨迹预测框架不同。先前的方法已直接在网格细胞空间中优化了确定性的L-OGM预测体系结构。尽管这些方法在预测方面取得了一定程度的成功,但它们偶尔会努力应对不现实和不正确的预测。我们声称,通过使用生成模型可以增强预测的占用网格的质量和现实主义。我们提出了一个将占用预测分解为以下框架:在学识渊博的潜在空间内的表示和随机预测。我们的方法允许将模型调节到其他可用的传感器方式上,例如RGB-CAMERAS和高清图。我们证明了我们的方法实现了最先进的性能,并且可以在现实世界中的不同机器人平台,Waymo Open和我们在实验车辆平台上收集的自定义数据集之间的不同机器人平台之间进行转移。

Environment prediction frameworks are integral for autonomous vehicles, enabling safe navigation in dynamic environments. LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation that facilitates joint scene predictions without relying on manual labeling unlike commonly used trajectory prediction frameworks. Prior approaches have optimized deterministic L-OGM prediction architectures directly in grid cell space. While these methods have achieved some degree of success in prediction, they occasionally grapple with unrealistic and incorrect predictions. We claim that the quality and realism of the forecasted occupancy grids can be enhanced with the use of generative models. We propose a framework that decouples occupancy prediction into: representation learning and stochastic prediction within the learned latent space. Our approach allows for conditioning the model on other available sensor modalities such as RGB-cameras and high definition maps. We demonstrate that our approach achieves state-of-the-art performance and is readily transferable between different robotic platforms on the real-world NuScenes, Waymo Open, and a custom dataset we collected on an experimental vehicle platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源