论文标题

基于CPD的基于CPD的通道估计和RIS辅助毫米波通信的联合波束形成

Compressed CPD-Based Channel Estimation and Joint Beamforming for RIS-Assisted Millimeter Wave Communications

论文作者

Zheng, Xi, Fang, Jun, Wang, Hongwei, Wang, Peilan, Li, Hongbin

论文摘要

我们考虑通道估计的问题以及可重新配置的智能表面(RIS)辅助毫米波(MMWave)多输入多输出(MIMO)正交频差(OFDM)系统的问题。我们表明,通过设计良好设计的基于框架的训练协议,可以将接收的试点信号组织成一个低级别的三阶张量,该张量接收了规范的多层分解(CPD)。基于此观察结果,我们提出了两种基于CPD的方法,用于估计与不同子载体相关的级联通道。所提出的方法利用了CPD公式的内在低级度,这是MMWave通道稀疏散射特征的结果,因此有可能实现明显的训练大写降低。具体而言,我们的分析表明,所提出的方法具有样品复杂性,该复杂性与级联通道的稀疏性四次缩放。同样,通过利用有效通道的奇异值分解结构,本文根据估计的级联通道开发了一种关节活动和被动的波束形成方法。仿真结果表明,提出的基于CPD的通道估计方法达到了接近Cramer-Rao结合(CRB)的均方根误差,并且比基于压缩传感的方法具有明显的优势。另外,提出的凝管形成方法可以有效地利用估计的通道参数来实现卓越的光束成型性能。

We consider the problem of channel estimation and joint active and passive beamforming for reconfigurable intelligent surface (RIS) assisted millimeter wave (mmWave) multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. We show that, with a well-designed frame-based training protocol, the received pilot signal can be organized into a low-rank third-order tensor that admits a canonical polyadic decomposition (CPD). Based on this observation, we propose two CPD-based methods for estimating the cascade channels associated with different subcarriers. The proposed methods exploit the intrinsic low-rankness of the CPD formulation, which is a result of the sparse scattering characteristics of mmWave channels, and thus have the potential to achieve a significant training overhead reduction. Specifically, our analysis shows that the proposed methods have a sample complexity that scales quadratically with the sparsity of the cascade channel. Also, by utilizing the singular value decomposition-like structure of the effective channel, this paper develops a joint active and passive beamforming method based on the estimated cascade channels. Simulation results show that the proposed CPD-based channel estimation methods attain mean square errors that are close to the Cramer-Rao bound (CRB) and present a clear advantage over the compressed sensing-based method. In addition, the proposed joint beamforming method can effectively utilize the estimated channel parameters to achieve superior beamforming performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源