论文标题
部分可观测时空混沌系统的无模型预测
EdgeFaaS: A Function-based Framework for Edge Computing
论文作者
论文摘要
物联网(IoT)产生的数据的快速增长(例如智能手机和智能家居设备)在传输,存储和处理数据时提出了云计算的新挑战。另一方面,随着边缘设备越来越强大,边缘计算具有更好的响应能力,隐私和成本效率。但是,整个云和边缘的资源是高度分布且高度多样的。为了应对这些挑战,本文提出了Edgefaas,这是一种基于功能的服务(FAAS)计算框架,该框架支持在物联网,边缘和云系统上对分布式和异构资源的灵活,方便和优化的使用。 Edgefaas允许在同一框架下管理集群资源和各个设备,并为功能提供计算和存储资源。它提供了虚拟功能和虚拟存储接口,可在异构计算和存储资源之间提供一致的功能管理和存储管理。它会根据数据的性能和隐私要求自动优化功能的调度和放置。基于两个边缘工作流进行评估Edgefaas:视频分析工作流程和联合学习工作流程,这两个都是代表性的边缘应用程序,并且涉及从Edge设备生成的大量输入数据。
The rapid growth of data generated from Internet of Things (IoTs) such as smart phones and smart home devices presents new challenges to cloud computing in transferring, storing, and processing the data. With increasingly more powerful edge devices, edge computing, on the other hand, has the potential to better responsiveness, privacy, and cost efficiency. However, resources across the cloud and edge are highly distributed and highly diverse. To address these challenges, this paper proposes EdgeFaaS, a Function-as-a-Service (FaaS) based computing framework that supports the flexible, convenient, and optimized use of distributed and heterogeneous resources across IoT, edge, and cloud systems. EdgeFaaS allows cluster resources and individual devices to be managed under the same framework and provide computational and storage resources for functions. It provides virtual function and virtual storage interfaces for consistent function management and storage management across heterogeneous compute and storage resources. It automatically optimizes the scheduling of functions and placement of data according to their performance and privacy requirements. EdgeFaaS is evaluated based on two edge workflows: video analytics workflow and federated learning workflow, both of which are representative edge applications and involve large amounts of input data generated from edge devices.