论文标题
apaunet:3D医学分割中小目标的轴投影注意力
APAUNet: Axis Projection Attention UNet for Small Target in 3D Medical Segmentation
论文作者
论文摘要
在3D医学图像分割中,小目标细分对于诊断至关重要,但仍面临挑战。在本文中,我们提出了3D医学图像分割的轴预测注意UNET,命名为Apaunet,尤其是针对小目标。考虑到3D功能空间中背景的很大比例,我们引入了一种投影策略,将3D功能投射到三个正交2D平面中,以从不同视图中捕获上下文关注。这样,我们可以过滤冗余的功能信息,并减轻3D扫描中小病变的关键信息的丢失。然后,我们利用尺寸杂交策略将3D特征与不同轴的关注融合,并通过加权求和来合并它们,以适应地学习不同观点的重要性。最后,在APA解码器中,我们在2D投影过程中串联了高和低分辨率的特征,从而获得了更精确的多尺度信息,这对于小病变分割至关重要。两个公共数据集(BTCV和MSD)上的定量和定性实验结果表明,我们提出的APAUNET优于其他方法。具体而言,我们的Apaunet在BTCV上的平均骰子得分为87.84,MSD肝脏的平均骰子得分为84.48,MSD-Pancreas的平均骰子得分为84.48,在小目标上的SOTA方法显着超过了先前的SOTA方法。
In 3D medical image segmentation, small targets segmentation is crucial for diagnosis but still faces challenges. In this paper, we propose the Axis Projection Attention UNet, named APAUNet, for 3D medical image segmentation, especially for small targets. Considering the large proportion of the background in the 3D feature space, we introduce a projection strategy to project the 3D features into three orthogonal 2D planes to capture the contextual attention from different views. In this way, we can filter out the redundant feature information and mitigate the loss of critical information for small lesions in 3D scans. Then we utilize a dimension hybridization strategy to fuse the 3D features with attention from different axes and merge them by a weighted summation to adaptively learn the importance of different perspectives. Finally, in the APA Decoder, we concatenate both high and low resolution features in the 2D projection process, thereby obtaining more precise multi-scale information, which is vital for small lesion segmentation. Quantitative and qualitative experimental results on two public datasets (BTCV and MSD) demonstrate that our proposed APAUNet outperforms the other methods. Concretely, our APAUNet achieves an average dice score of 87.84 on BTCV, 84.48 on MSD-Liver and 69.13 on MSD-Pancreas, and significantly surpass the previous SOTA methods on small targets.