论文标题

在距离光谱和基于距离的拓扑指数上,三个图的中央顶点边缘连接

On the distance spectrum and distance-based topological indices of central vertex-edge join of three graphs

论文作者

T, Haritha, V., Chithra A.

论文摘要

拓扑指数是描述化合物的性质的分子描述。这些拓扑指数将特定的物理化学特性(例如沸点,蒸发的焓,应变能和化合物的稳定性)相关联。 This article introduces a new graph operation based on central graph called central vertex-edge join and provides its results related to graph invariants like eccentric-connectivity index, connective eccentricity index, total-eccentricity index, average eccentricity index, Zagreb eccentricity indices, eccentric geometric-arithmetic index, eccentric atom-bond connectivity index, and Wiener index.另外,我们讨论了三个常规图的中央顶点边缘连接的距离频谱。此外,我们获得了$ d $ equienergetic图的新家庭,这些图形是非$ d $ cosectral。

Topological indices are molecular descriptors that describe the properties of chemical compounds. These topological indices correlate specific physico-chemical properties like boiling point, enthalpy of vaporization, strain energy, and stability of chemical compounds. This article introduces a new graph operation based on central graph called central vertex-edge join and provides its results related to graph invariants like eccentric-connectivity index, connective eccentricity index, total-eccentricity index, average eccentricity index, Zagreb eccentricity indices, eccentric geometric-arithmetic index, eccentric atom-bond connectivity index, and Wiener index. Also, we discuss the distance spectrum of the central vertex-edge join of three regular graphs. Furthermore, we obtain new families of $D$-equienergetic graphs, which are non $D$-cospectral.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源