论文标题

多保真蒙特卡洛:伪核心方法

Multi-fidelity Monte Carlo: a pseudo-marginal approach

论文作者

Cai, Diana, Adams, Ryan P.

论文摘要

马尔可夫链蒙特卡洛(MCMC)是科学应用中不确定性定量和传播的既定方法。将MCMC应用于科学领域的关键挑战是计算:目标密度通常是昂贵的计算的函数,例如高保真物理模拟,棘手的积分或缓慢反驳的迭代算法。因此,使用具有昂贵目标密度的MCMC算法变得不切实际,因为需要在算法的每种迭代中评估这些昂贵的计算。实际上,这些计算通常通过较便宜,低保真的计算近似,从而导致目标密度的偏差。多保真MCMC算法结合了不同忠诚度的模型,以获得近似的目标密度,计算成本较低。在本文中,我们描述了一类渐近确切的多效率MCMC算法,用于计算一系列增加忠诚度模型的设置,以计算出近似于昂贵的目标密度。我们采用伪划分的MCMC方法进行多余性推断,该方法利用了通过随机截断的模型低效率序列的望远镜构成的目标保真度的更便宜,随机的无偏见估计量。最后,我们在多种应用程序上讨论并评估了所提出的多保真MCMC方法,包括log-gaussian Cox过程建模,贝叶斯ode系统识别,PDE受限优化和高斯过程回归参数推断。

Markov chain Monte Carlo (MCMC) is an established approach for uncertainty quantification and propagation in scientific applications. A key challenge in applying MCMC to scientific domains is computation: the target density of interest is often a function of expensive computations, such as a high-fidelity physical simulation, an intractable integral, or a slowly-converging iterative algorithm. Thus, using an MCMC algorithms with an expensive target density becomes impractical, as these expensive computations need to be evaluated at each iteration of the algorithm. In practice, these computations often approximated via a cheaper, low-fidelity computation, leading to bias in the resulting target density. Multi-fidelity MCMC algorithms combine models of varying fidelities in order to obtain an approximate target density with lower computational cost. In this paper, we describe a class of asymptotically exact multi-fidelity MCMC algorithms for the setting where a sequence of models of increasing fidelity can be computed that approximates the expensive target density of interest. We take a pseudo-marginal MCMC approach for multi-fidelity inference that utilizes a cheaper, randomized-fidelity unbiased estimator of the target fidelity constructed via random truncation of a telescoping series of the low-fidelity sequence of models. Finally, we discuss and evaluate the proposed multi-fidelity MCMC approach on several applications, including log-Gaussian Cox process modeling, Bayesian ODE system identification, PDE-constrained optimization, and Gaussian process regression parameter inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源