论文标题
通过深度学习预测瓦伦西亚市的交通通量
Predicting the traffic flux in the city of Valencia with Deep Learning
论文作者
论文摘要
交通拥堵是一个主要的城市问题,由于其对健康和环境的不利影响,因此减少它已成为城市决策者的优先事项。在这项工作中,我们调查了整个城市的交通流量的大量数据以及道路城市网络的知识是否使人工智能可以预先预测交通通量足够远,以便能够降低排放措施,例如与低排放区政策相关的措施。为了构建预测模型,我们使用了瓦伦西亚交通传感器系统,这是世界上最密集的人之一,在整个城市中分布近3500个传感器。在这项工作中,我们使用2016年和2017年的历史数据来训练和表征LSTM(长期短期记忆)神经网络,以预测城市中的交通时空模式。我们表明,LSTM能够通过提取测量数据的模式来实时预测交通通量的未来进化。
Traffic congestion is a major urban issue due to its adverse effects on health and the environment, so much so that reducing it has become a priority for urban decision-makers. In this work, we investigate whether a high amount of data on traffic flow throughout a city and the knowledge of the road city network allows an Artificial Intelligence to predict the traffic flux far enough in advance in order to enable emission reduction measures such as those linked to the Low Emission Zone policies. To build a predictive model, we use the city of Valencia traffic sensor system, one of the densest in the world, with nearly 3500 sensors distributed throughout the city. In this work we train and characterize an LSTM (Long Short-Term Memory) Neural Network to predict temporal patterns of traffic in the city using historical data from the years 2016 and 2017. We show that the LSTM is capable of predicting future evolution of the traffic flux in real-time, by extracting patterns out of the measured data.