论文标题
公共交通抵达预测:SEQ2SEQ RNN方法
Public Transit Arrival Prediction: a Seq2Seq RNN Approach
论文作者
论文摘要
公共交通的到达/旅行时间因季节性,公交车站的停留时间,交通信号,旅行需求波动等因素而表现出差异。这使公共汽车到达时间预测(BATP)成为一个具有挑战性的问题,尤其是在发展中国家。在当前工作中,提出了基于复发性神经网络(RNN)的新型数据驱动模型(RNN)。该模型以与现有方法不同的独特(非线性)方式智能地结合了空间和时间相关性。特别是,我们为BATP提出了一个基于封闭式的复发单元(GRU)基于编码器(ED)或SEQ2SEQ RNN模型(最初是为语言翻译引入的)。动态实时BATP问题的几何形状使基于编码器的RNN结构非常适合。我们在解码器的每个步骤(从机器翻译应用程序中经常探索的功能)中为相关的其他同步输入(来自以前的旅行)。通过对旅行时间预测的充分影响的影响进一步动机,我们还建议在解码器上使用双向层(在其他基于时间序列的ED应用程序上下文中未探索的东西)。提出的算法的有效性是在从具有挑战性的交通状况中收集的实际现场数据上证明的。我们的实验表明,所提出的方法优于针对同一问题提出的各种现有的数据驱动方法。
Arrival/Travel times for public transit exhibit variability on account of factors like seasonality, dwell times at bus stops, traffic signals, travel demand fluctuation etc. The developing world in particular is plagued by additional factors like lack of lane discipline, excess vehicles, diverse modes of transport and so on. This renders the bus arrival time prediction (BATP) to be a challenging problem especially in the developing world. A novel data-driven model based on recurrent neural networks (RNNs) is proposed for BATP (in real-time) in the current work. The model intelligently incorporates both spatial and temporal correlations in a unique (non-linear) fashion distinct from existing approaches. In particular, we propose a Gated Recurrent Unit (GRU) based Encoder-Decoder(ED) OR Seq2Seq RNN model (originally introduced for language translation) for BATP. The geometry of the dynamic real time BATP problem enables a nice fit with the Encoder-Decoder based RNN structure. We feed relevant additional synchronized inputs (from previous trips) at each step of the decoder (a feature classically unexplored in machine translation applications). Further motivated from accurately modelling congestion influences on travel time prediction, we additionally propose to use a bidirectional layer at the decoder (something unexplored in other time-series based ED application contexts). The effectiveness of the proposed algorithms is demonstrated on real field data collected from challenging traffic conditions. Our experiments indicate that the proposed method outperforms diverse existing state-of-art data-driven approaches proposed for the same problem.