论文标题

基于神经网络的点扩展功能对天文应用的反卷积

Neural Network Based Point Spread Function Deconvolution For Astronomical Applications

论文作者

Wang, Hong, Sreejith, Sreevarsha, Lin, Yuewei, Ramachandra, Nesar, Slosar, Anže, Yoo, Shinjae

论文摘要

光学天文图像受到光学系统和大气(见)的点扩散函数(PSF)的强烈影响,该图像模糊了观察到的图像。模糊的量既取决于观察到的条带,又取决于观察过程中的大气条件。典型的天文图像可能会具有独特的PSF,该PSF在不同的频段中是非圆形且不同的。同时,对已知恒星的观察也可以准确地确定此PSF。因此,在图像分析期间,任何用于天文图像生产分析的严重候选者都必须考虑已知的PSF。到目前为止,神经网络(NN)在天文图像分析中的大多数应用已通过在培训和验证中假设固定的PSF来忽略了这个问题。我们提出了基于Deep Wiener Deonvolution网络(DWDN)的基于神经网络的反卷积算法。该算法属于一类非盲反卷积算法,因为它假定已知PSF形状。我们研究了在现实的观察条件下,根据最相关的天文数量(例如颜色,椭圆度和方向)的恢复,该算法的不同版本的性能。我们研究了自定义损失函数,以优化具有混合结果的天文数量的恢复。

Optical astronomical images are strongly affected by the point spread function (PSF) of the optical system and the atmosphere (seeing) which blurs the observed image. The amount of blurring depends both on the observed band, and on the atmospheric conditions during observation. A typical astronomical image will likely have a unique PSF, that is non-circular and different in different bands. At the same time, observations of known stars also give us an accurate determination of this PSF. Therefore, any serious candidate for production analysis of astronomical images must take the known PSF into account during the image analysis. So far, the majority of applications of neural networks (NN) to astronomical image analysis have ignored this problem by assuming a fixed PSF in training and validation. We present a neural-network based deconvolution algorithm based on Deep Wiener Deconvolution Network (DWDN). This algorithm belongs to a class of non-blind deconvolution algorithms, since it assumes the PSF shape is known. We study the performance of different versions of this algorithm under realistic observational conditions in terms of the recovery of the most relevant astronomical quantities such as colors, ellipticities and orientations. We investigate custom loss functions that optimize the recovery of astronomical quantities with mixed results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源