论文标题
Terahertz电场驱动的动力多性性$ _3 $
Terahertz electric-field driven dynamical multiferroicity in SrTiO$_3$
论文作者
论文摘要
物质上集体秩序的出现是物理学中最基本,最有趣的现象之一。近年来,在热力学平衡中无法获得的新型物质有序状态的超快动力控制和创建引起了很多关注。其中,已经引入了动力学多效性的理论概念来描述磁化强度的出现,该磁化的出现是通过时间依赖性的非铁磁性材料中的电力极化。简而言之,在晶体中,离子的大幅度相干旋转运动会沿旋转轴诱导磁矩。但是,仍然缺乏对此效果的实验验证。在这里,由于这种机制,我们提供了室温磁化的证据。为了实现这一目标,我们以强烈的圆极化的Terahertz电场来共同驱动红外活性的软声子模式,并检测出较大的磁磁光kerr效应。一个简单的模型,其中包括两个耦合的非线性振荡器,其力和耦合使用在有限温度下使用自洽的声子理论得出AB-Initio计算,从而定性地重现了我们对时间和频率域的实验观察。当人们还考虑了einsten -de haas效应的倒数的声子类似物时,获得了效应的定量正确幅度,也称为Barnett效应,其中声子顺序的总角动量传递到电子中。我们的发现显示了一条新的路径,可以通过对光振动的一致控制来设计超快磁开关。
The emergence of collective order in matter is among the most fundamental and intriguing phenomena in physics. In recent years, the ultrafast dynamical control and creation of novel ordered states of matter not accessible in thermodynamic equilibrium is receiving much attention. Among those, the theoretical concept of dynamical multiferroicity has been introduced to describe the emergence of magnetization by means of a time-dependent electric polarization in non-ferromagnetic materials. In simple terms, a large amplitude coherent rotating motion of the ions in a crystal induces a magnetic moment along the axis of rotation. However, the experimental verification of this effect is still lacking. Here, we provide evidence of room temperature magnetization in the archetypal paraelectric perovskite SrTiO$_3$ due to this mechanism. To achieve it, we resonantly drive the infrared-active soft phonon mode with intense circularly polarized terahertz electric field, and detect a large magneto-optical Kerr effect. A simple model, which includes two coupled nonlinear oscillators whose forces and couplings are derived with ab-initio calculations using self-consistent phonon theory at a finite temperature, reproduces qualitatively our experimental observations on the temporal and frequency domains. A quantitatively correct magnitude of the effect is obtained when one also considers the phonon analogue of the reciprocal of the Einsten - de Haas effect, also called the Barnett effect, where the total angular momentum from the phonon order is transferred to the electronic one. Our findings show a new path for designing ultrafast magnetic switches by means of coherent control of lattice vibrations with light.