论文标题
在混乱的环境中学习感知感知的敏捷飞行
Learning Perception-Aware Agile Flight in Cluttered Environments
论文作者
论文摘要
最近,神经控制政策的表现优于现有的基于模型的计划和控制方法,用于在最短时间内通过混乱的环境自主导航二次运动。但是,由于相机有限的视野和四型二极管的不足性质,他们并不是意识到的,这是基于视觉导航的至关重要的要求。我们提出了一个基于学习的系统,该系统可以在混乱的环境中实现感知感知,敏捷的飞行。我们的方法通过利用特权学习的框架来结合模仿学习与强化学习(RL)。使用RL,我们首先培训一种感知感知的教师政策,并提供全州信息,以在最短的时间内通过混乱的环境飞行。然后,我们使用模仿学习将其知识提炼成基于视觉的学生政策,该政策只能通过相机感知环境。我们的方法紧密地伴侣感知和控制,在计算速度(快10倍)和成功率方面具有显着优势。我们使用硬件中的模拟演示了闭环控制性能。
Recently, neural control policies have outperformed existing model-based planning-and-control methods for autonomously navigating quadrotors through cluttered environments in minimum time. However, they are not perception aware, a crucial requirement in vision-based navigation due to the camera's limited field of view and the underactuated nature of a quadrotor. We propose a learning-based system that achieves perception-aware, agile flight in cluttered environments. Our method combines imitation learning with reinforcement learning (RL) by leveraging a privileged learning-by-cheating framework. Using RL, we first train a perception-aware teacher policy with full-state information to fly in minimum time through cluttered environments. Then, we use imitation learning to distill its knowledge into a vision-based student policy that only perceives the environment via a camera. Our approach tightly couples perception and control, showing a significant advantage in computation speed (10 times faster) and success rate. We demonstrate the closed-loop control performance using hardware-in-the-loop simulation.