论文标题

非参数和正则动态剂量验证剂,用于顺序观察

Nonparametric and Regularized Dynamical Wasserstein Barycenters for Sequential Observations

论文作者

Cheng, Kevin C., Aeron, Shuchin, Hughes, Michael C., Miller, Eric L.

论文摘要

我们考虑用于顺序观察的概率模型,这些模型在有限数量的状态之间表现出逐渐过渡。我们特别受到人类活动分析等应用的动机,在该应用中,观察到的加速度计时间序列包含代表不同活动的细分,我们称之为纯状态,以及这些纯状态之间连续过渡的时期。为了捕获这种暂时性的行为,Che​​ng等人的动力学瓦斯坦Barycenter(DWB)模型。在2021年,[1]与每个纯状态相关联,一个生成数据的分布,并模拟这些状态之间的连续转变,作为这些分布的Wasserstein Barycenter,并具有动态发展的权重。重点是单变量的情况,可以以封闭形式计算Wasserstein距离和Barycenters,我们扩展了[1]专门放宽纯状态作为高斯分布的参数化。我们重点介绍了与识别模型参数的唯一性以及在估计有限数量样本的动态发展分布时引起的不确定性有关的问题。为了改善非唯一性,我们引入了正则化,使时间平滑度对barycentric权重的动力学施加了时间平滑度。基于纯状态分布的基于分位数的近似产生了有限的维估计问题,我们使用循环下降在更新到纯态分位数函数和BaryCentric权重的更新之间进行数值求解。我们证明了所提出的算法在分割模拟和现实世界活动时间序列中的实用性。

We consider probabilistic models for sequential observations which exhibit gradual transitions among a finite number of states. We are particularly motivated by applications such as human activity analysis where observed accelerometer time series contains segments representing distinct activities, which we call pure states, as well as periods characterized by continuous transition among these pure states. To capture this transitory behavior, the dynamical Wasserstein barycenter (DWB) model of Cheng et al. in 2021 [1] associates with each pure state a data-generating distribution and models the continuous transitions among these states as a Wasserstein barycenter of these distributions with dynamically evolving weights. Focusing on the univariate case where Wasserstein distances and barycenters can be computed in closed form, we extend [1] specifically relaxing the parameterization of the pure states as Gaussian distributions. We highlight issues related to the uniqueness in identifying the model parameters as well as uncertainties induced when estimating a dynamically evolving distribution from a limited number of samples. To ameliorate non-uniqueness, we introduce regularization that imposes temporal smoothness on the dynamics of the barycentric weights. A quantile-based approximation of the pure state distributions yields a finite dimensional estimation problem which we numerically solve using cyclic descent alternating between updates to the pure-state quantile functions and the barycentric weights. We demonstrate the utility of the proposed algorithm in segmenting both simulated and real world human activity time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源