论文标题
点火器:微博应用程序中的新闻建议(扩展版本)
IGNiteR: News Recommendation in Microblogging Applications (Extended Version)
论文作者
论文摘要
新闻建议是推荐系统中最具挑战性的任务之一,这主要是由于新闻与用户的短暂相关性。作为社交媒体,尤其是Twitter或Weibo(Weibo)的微博应用程序,作为新闻传播的平台获得了知名度,在这种情况下,个性化新闻推荐成为一个重大挑战。我们通过考虑社交互动和观察来追踪如何在基础网络中推荐信息的信息,通过考虑社交互动和观察来重新访问新闻建议。我们提出了一种基于深度学习的方法,即扩散和影响力,称为“影响力新闻”推荐人(IGNITER)。这是一个基于内容的深度建议模型,共同利用可能影响采用决策的所有数据方面,即语义,与扩散相关的功能,与用户之间的本地和全球影响有关,时间吸引力,及时性以及动态用户的偏好。为了代表新闻,使用多层次的基于注意的编码器来揭示用户的不同兴趣。该新闻编码器依靠CNN来获得新闻内容,以及针对扩散痕迹的细心LSTM。对于后者,通过利用以前观察到的新闻扩散(级联)在微博介质中,用户被映射到潜在的空间,以捕捉对他人的潜在影响或受到新闻收养影响的敏感性。同样,时间敏感的用户编码器使我们能够使用基于注意的双向LSTM捕获用户的动态偏好。我们在两个现实世界数据集上进行了广泛的实验,这表明IGNITER优于最先进的基于深度学习的新闻推荐方法。
News recommendation is one of the most challenging tasks in recommender systems, mainly due to the ephemeral relevance of news to users. As social media, and particularly microblogging applications like Twitter or Weibo, gains popularity as platforms for news dissemination, personalized news recommendation in this context becomes a significant challenge. We revisit news recommendation in the microblogging scenario, by taking into consideration social interactions and observations tracing how the information that is up for recommendation spreads in an underlying network. We propose a deep-learning based approach that is diffusion and influence-aware, called Influence-Graph News Recommender (IGNiteR). It is a content-based deep recommendation model that jointly exploits all the data facets that may impact adoption decisions, namely semantics, diffusion-related features pertaining to local and global influence among users, temporal attractiveness, and timeliness, as well as dynamic user preferences. To represent the news, a multi-level attention-based encoder is used to reveal the different interests of users. This news encoder relies on a CNN for the news content and on an attentive LSTM for the diffusion traces. For the latter, by exploiting previously observed news diffusions (cascades) in the microblogging medium, users are mapped to a latent space that captures potential influence on others or susceptibility of being influenced for news adoptions. Similarly, a time-sensitive user encoder enables us to capture the dynamic preferences of users with an attention-based bidirectional LSTM. We perform extensive experiments on two real-world datasets, showing that IGNiteR outperforms the state-of-the-art deep-learning based news recommendation methods.