论文标题

使用大气模型去除云

Cloud removal Using Atmosphere Model

论文作者

Guo, Yi, Li, Feng, Wang, Zhuo

论文摘要

去除云是遥感数据分析中的重要任务。由于图像传感器距离地面距离很远,因此云的一部分可能被云覆盖。此外,两者之间的气氛在获得的图像上创造了持续的雾层层。为了恢复地面图像,我们建议在低级和稀疏模型的框架中使用散射模型作为任何场景图像的时间序列。我们进一步开发其变体,它更快又准确。为了衡量不同方法{\ em客观地}的性能,我们开发了一种半现实的模拟方法来产生云覆盖物,以便可以进行定量分析各种方法,这可以详细研究详细研究云清除算法的许多方面,包括与已遵循的模型相比,验证所提出的模型的有效性,包括常规模型,包括常规模型,并确定了良好的范围。后者与稀疏正规化参数范围的理论分析相吻合,并通过数值验证。

Cloud removal is an essential task in remote sensing data analysis. As the image sensors are distant from the earth ground, it is likely that part of the area of interests is covered by cloud. Moreover, the atmosphere in between creates a constant haze layer upon the acquired images. To recover the ground image, we propose to use scattering model for temporal sequence of images of any scene in the framework of low rank and sparse models. We further develop its variant, which is much faster and yet more accurate. To measure the performance of different methods {\em objectively}, we develop a semi-realistic simulation method to produce cloud cover so that various methods can be quantitatively analysed, which enables detailed study of many aspects of cloud removal algorithms, including verifying the effectiveness of proposed models in comparison with the state-of-the-arts, including deep learning models, and addressing the long standing problem of the determination of regularisation parameters. The latter is companioned with theoretic analysis on the range of the sparsity regularisation parameter and verified numerically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源