论文标题

局部有限的无限模型和弱loday-pirashvili模块在差分级代数上

Locally finite infinity-modules and weak Loday-Pirashvili modules over differential graded Lie algebras

论文作者

Chen, Zhuo, Qiao, Yu, Xiang, Maosong, Zhang, Tao

论文摘要

在最近的$ \ infty $ - 类别理论的最新发展与差分(简称DG)相关的代数方面,我们为本地有限的$ \ infty $ - $ \ mathfrak {g} $ - 模块模块开发了一个通用框架。我们表明,这种本地有限的$ \ infty $ - $ \ mathfrak {g} $ - 模块几乎是Vallette意义上的模型类别。作为线性图的张量类别中的Loday和Pirashvili的Lie代数对物的同源理论概括,我们进一步研究了由$ \ infty $ - morphisms组成的Loday-Pirashvili模块,该模块由本地有限的$ \ infty $ \ infty $ \ infty $ - $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ \ $ \ $ \ $ \ \ \ \ \ \ $ \ $ \ $ \ \ $ \ $ \ \ \ \ - $ \ mathfrak {g} $。从$ \ mathfrak {g} $上方的如此弱的loday-pirashvili模块的类别中,我们找到了一个函数,将其映射到Leibniz $ _ \ Infty $ algebras的类别,该类别富含Chevalley-Eilenberg dg algebra of Chevalley-eilenberg dg algebra of $ \ m m ialfrak $ \ m m mathfrak {g} $ {g} $。该函子可以被视为Loday和Pirashvili的原始方法的同质抬起,以实现线性图类别中Lie代数对象的Leibniz代数。

Motivated by recent developments of $\infty$-categorical theories related to differential graded (dg for short) Lie algebras, we develop a general framework for locally finite $\infty$-$\mathfrak{g}$-modules over a dg Lie algebra $\mathfrak{g}$. We show that the category of such locally finite $\infty$-$\mathfrak{g}$-modules is almost a model category in the sense of Vallette. As a homotopy theoretical generalization of Loday and Pirashvili's Lie algebra objects in the tensor category of linear maps, we further study weak Loday-Pirashvili modules consisting of $\infty$-morphisms from locally finite $\infty$-$\mathfrak{g}$-modules to the adjoint module $\mathfrak{g}$. From the category of such weak Loday-Pirashvili modules over $\mathfrak{g}$, we find a functor that maps to the category of Leibniz$_\infty$ algebras enriched over the Chevalley-Eilenberg dg algebra of $\mathfrak{g}$. This functor can be regarded as the homotopy lifting of Loday and Pirashvili's original method to realize Leibniz algebras from Lie algebra objects in the category of linear maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源