论文标题

随机amenable $ \ mathrm {c}^*$ - 代数

Random amenable $\mathrm{C}^*$-algebras

论文作者

Jacelon, Bhishan

论文摘要

随机UHF代数是无限类型的概率是多少?随机简单AI代数最多具有$ K $极端痕迹的可能性是多少?随机villadsen型AH代数的比较半径的预期值是多少?这样的代数为$ \ MATHCAL {z} $ - 稳定的概率是多少?随机的cuntz-krieger代数纯粹是无限且简单的概率是什么?关于其$ k $ - 理论的分布可以说什么?通过构建$ \ mathrm {c}^*$ - 与合适的随机(步行)相关的代数,我们提供了上下文,其中这些是有意义的问题,具有可计算的答案。

What is the probability that a random UHF algebra is of infinite type? What is the probability that a random simple AI algebra has at most $k$ extremal traces? What is the expected value of the radius of comparison of a random Villadsen-type AH algebra? What is the probability that such an algebra is $\mathcal{Z}$-stable? What is the probability that a random Cuntz-Krieger algebra is purely infinite and simple, and what can be said about the distribution of its $K$-theory? By constructing $\mathrm{C}^*$-algebras associated with suitable random (walks on) graphs, we provide context in which these are meaningful questions with computable answers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源