论文标题
张力纳分析仪:使用非负张量分解的大城市中城市模式的识别
TensorAnalyzer: Identification of Urban Patterns in Big Cities using Non-Negative Tensor Factorization
论文作者
论文摘要
使用经典的聚类算法从多个数据源中提取相关的城市模式可能很困难,因为我们必须对算法的超参数进行合适的设置并与异常值进行处理。应该正确解决该问题,以帮助城市规划者参与大城市进一步发展的决策过程。例如,专家对犯罪学的主要兴趣正在理解犯罪与特定地理位置的社会经济特征之间的关系。此外,经典的聚类算法几乎没有注意到地理参考数据源中复杂的空间相关性。本文提出了一种基于张量分解的多个数据源的最相关的城市模式的新方法。与经典方法相比,提出的方法的性能得到证明以验证已确定的模式的质量。结果表明该方法可以有效地识别功能模式,以表征数据集以进一步分析,以实现良好的聚类质量。此外,我们开发了一个名为Tensoranalyzer的通用框架,其中通过一组实验和一个现实世界中的案例研究对所提出的方法的有效性和实用性进行了测试,显示了学校周围的犯罪事件与分析中涉及的其他变量之间的犯罪事件之间的关系。
Extracting relevant urban patterns from multiple data sources can be difficult using classical clustering algorithms since we have to make a suitable setup of the hyperparameters of the algorithms and deal with outliers. It should be addressed correctly to help urban planners in the decision-making process for the further development of a big city. For instance, experts' main interest in criminology is comprehending the relationship between crimes and the socio-economic characteristics at specific georeferenced locations. In addition, the classical clustering algorithms take little notice of the intricate spatial correlations in georeferenced data sources. This paper presents a new approach to detecting the most relevant urban patterns from multiple data sources based on tensor decomposition. Compared to classical methods, the proposed approach's performance is attested to validate the identified patterns' quality. The result indicates that the approach can effectively identify functional patterns to characterize the data set for further analysis in achieving good clustering quality. Furthermore, we developed a generic framework named TensorAnalyzer, where the effectiveness and usefulness of the proposed methodology are tested by a set of experiments and a real-world case study showing the relationship between the crime events around schools and students performance and other variables involved in the analysis.