论文标题

IR2NET:准确二进制神经网络的信息限制和信息恢复

IR2Net: Information Restriction and Information Recovery for Accurate Binary Neural Networks

论文作者

Xue, Ping, Lu, Yang, Chang, Jingfei, Wei, Xing, Wei, Zhen

论文摘要

重量和激活二聚体可以有效地压缩深层神经网络并加速模型推断,但会导致严重的准确性降解。二进制神经网络(BNN)的现有优化方法着重于拟合完整精确网络以减少量化错误,并遭受准确性和计算复杂性之间的权衡。相反,考虑到BNN的代表性有限引起的学习能力和信息损失有限,我们提出IR $^2 $ net来刺激BNN的潜力并提高网络的准确性,并限制输入信息并恢复输入信息并恢复功能信息,包括:1)信息限制:对于BNN,对于bnn而言,对信息进行了匹配,无法访问某些信息,这些信息无法介绍某些信息,以确定某些信息,以确定某些信息,以确定某些信息,以确定某些信息,以确定某些信息,以确定某些信息,以确定某些信息,以确定某些信息,以确定某些信息,以确定信息,并确定某些信息的限制。学习能力; 2)信息恢复:由于向前传播中的信息丢失,网络的输出特征信息不足以支持准确的分类。通过选择一些具有更丰富信息的浅色特征地图,并将它们与最终功能地图融合以恢复功能信息。此外,通过简化信息恢复方法以在准确性和效率之间进行更好的权衡来降低计算成本。实验结果表明,即使$ \ sim $ \ sim $ 10倍浮点操作(Flops)减少RESNET-18,我们的方法仍然可以达到可比的精度。这些模型和代码可在https://github.com/pingxue-hfut/ir2net上找到。

Weight and activation binarization can efficiently compress deep neural networks and accelerate model inference, but cause severe accuracy degradation. Existing optimization methods for binary neural networks (BNNs) focus on fitting full-precision networks to reduce quantization errors, and suffer from the trade-off between accuracy and computational complexity. In contrast, considering the limited learning ability and information loss caused by the limited representational capability of BNNs, we propose IR$^2$Net to stimulate the potential of BNNs and improve the network accuracy by restricting the input information and recovering the feature information, including: 1) information restriction: for a BNN, by evaluating the learning ability on the input information, discarding some of the information it cannot focus on, and limiting the amount of input information to match its learning ability; 2) information recovery: due to the information loss in forward propagation, the output feature information of the network is not enough to support accurate classification. By selecting some shallow feature maps with richer information, and fusing them with the final feature maps to recover the feature information. In addition, the computational cost is reduced by streamlining the information recovery method to strike a better trade-off between accuracy and efficiency. Experimental results demonstrate that our approach still achieves comparable accuracy even with $ \sim $10x floating-point operations (FLOPs) reduction for ResNet-18. The models and code are available at https://github.com/pingxue-hfut/IR2Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源