论文标题

多元宇宙分析(PIMA)中的选择后推断:基于标志翻转得分测试的推论框架

Post-selection Inference in Multiverse Analysis (PIMA): an inferential framework based on the sign flipping score test

论文作者

Girardi, Paolo, Vesely, Anna, Lakens, Daniël, Altoè, Gianmarco, Pastore, Massimiliano, Calcagnì, Antonio, Finos, Livio

论文摘要

分析数据时,研究人员根据对数据生成过程的主观信念做出一些任意的决定,或者可以为此做出同样合理的替代选择。可以滥用这种广泛的数据分析选择,并且一直是多个领域复制危机的根本原因之一。最近,多元宇宙分析的引入为研究人员提供了一种方法,可以在分析数据时可以在合理的选择中评估结果的稳定性。多元宇宙分析仅限于描述性角色,缺乏适当且全面的推论程序。最近,规范曲线分析为多元宇宙分析增加了推论程序,但是这种方法仅限于与线性模型有关的简单案例,并且仅允许研究人员推断至少一项规范是否拒绝零假设,但不应选择哪些规范。在本文中,我们提出了多元宇宙分析(PIMA)的选择后推断方法,该方法是一种灵活且一般的推论方法,可以说明所有可能的模型,即合理分析的多元宇宙。该方法允许广泛的数据规格(即预处理)和任何广义线性模型;它允许通过合并所有合理的多元宇宙分析模型的信息来测试给定预测变量与结果无关的零假设,并对家庭误差率进行了强有力的控制,从而使研究人员可以声称可以拒绝每个规范显示出重大效果的零假设。推论建议基于条件重采样程序。待续...

When analyzing data researchers make some decisions that are either arbitrary, based on subjective beliefs about the data generating process, or for which equally justifiable alternative choices could have been made. This wide range of data-analytic choices can be abused, and has been one of the underlying causes of the replication crisis in several fields. Recently, the introduction of multiverse analysis provides researchers with a method to evaluate the stability of the results across reasonable choices that could be made when analyzing data. Multiverse analysis is confined to a descriptive role, lacking a proper and comprehensive inferential procedure. Recently, specification curve analysis adds an inferential procedure to multiverse analysis, but this approach is limited to simple cases related to the linear model, and only allows researchers to infer whether at least one specification rejects the null hypothesis, but not which specifications should be selected. In this paper we present a Post-selection Inference approach to Multiverse Analysis (PIMA) which is a flexible and general inferential approach that accounts for all possible models, i.e., the multiverse of reasonable analyses. The approach allows for a wide range of data specifications (i.e. pre-processing) and any generalized linear model; it allows testing the null hypothesis of a given predictor not being associated with the outcome, by merging information from all reasonable models of multiverse analysis, and provides strong control of the family-wise error rate such that it allows researchers to claim that the null-hypothesis can be rejected for each specification that shows a significant effect. The inferential proposal is based on a conditional resampling procedure. To be continued...

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源