论文标题

具有径向对称电势的确定性和PFAFFIAN库仑气体的分区功能

Partition functions of determinantal and Pfaffian Coulomb gases with radially symmetric potentials

论文作者

Byun, Sung-Soo, Kang, Nam-Gyu, Seo, Seong-Mi

论文摘要

我们考虑随机的正常矩阵和平面符号合并,可以将其解释为具有决定性和PFAFFIAF型结构的二维库仑气体。对于一般的径向对称势,我们得出了日志分区函数的渐近扩展,直到$ o(1)$ - 术语随着粒子的数量$ n $的增加而增加。值得注意的是,我们的发现强调,在这些扩展中,$ O(\ log n)$ - 和$ o(1)$的公式取决于液滴的连接性。对于随机的正常矩阵集合,我们的公式与Zabrodin和Wiegmann提出的预测达到了通用添加剂常数。对于平面符号合奏,这些扩展包含$ O(n)$ - 项中的一种新型成分,除了合奏的熵外,还在原点上评估的对数电位。

We consider random normal matrix and planar symplectic ensembles, which can be interpreted as two-dimensional Coulomb gases having determinantal and Pfaffian structures, respectively. For general radially symmetric potentials, we derive the asymptotic expansions of the log-partition functions up to and including the $O(1)$-terms as the number $N$ of particles increases. Notably, our findings stress that the formulas of the $O(\log N)$- and $O(1)$-terms in these expansions depend on the connectivity of the droplet. For random normal matrix ensembles, our formulas agree with the predictions proposed by Zabrodin and Wiegmann up to a universal additive constant. For planar symplectic ensembles, the expansions contain a new kind of ingredient in the $O(N)$-terms, the logarithmic potential evaluated at the origin in addition to the entropy of the ensembles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源