论文标题
手性有效野外理论中的单核和双重抗脑膜高达$ a = 8 $
Single- & double-strangeness hypernuclei up to $ A=8 $ within chiral effective field theory
论文作者
论文摘要
我们调查了$ s = -1 $和$ -2 $ hypernuclei,其中$ a = 4-8 $采用了雅各比 - ncsm方法,并结合了手学有效现场理论的框架工作中得出的baryon-baryon互动。使用相似性重归其化基团(SRG)转化了使用的相互作用,以使低和高弹药状态被解耦,从而可以显着加快结合能相对于模型空间的收敛性。但是,当省略了所谓的SRG诱导的高体力时,这种进化仅大致统一。我们首先探讨了SRG Evolution对$λ$分离能的影响$b_λ$在$ a = 3-5 $ hypernuclei中,仅当SRG进化的两体和三体力量和三体力时。对于后一种情况,我们对两个几乎相应的NLO13和NLO19 Yn电位进行了详尽的预测,$ a = 4-7 $ hypernuclei。 NLO19相互作用产生与实验相当的分离能,而NLO13低估了所有考虑的系统。我们进一步探索了$ a = 7,8 $多重的CSB分组,这些分组采用了两个NLO YN潜力,其中还包括$λ$ N渠道中的领先CSB潜力,$λ$ N渠道中的强度已安装在当前建立的CSB $ A = 4 $中。最后,我们根据NLO的$ξ$ n相互作用报告了$ξ$ hypernuclei的最新研究。
We investigate $S=-1$ and $-2$ hypernuclei with $A=4-8$ employing the Jacobi-NCSM approach and in combination with baryon-baryon interactions derived within the frame work of chiral effective field theory. The employed interactions are transformed using the similarity renormalization group (SRG) so that the low- and high-momentum states are decoupled, and, thereby,convergence of the binding energies with respect to model space can be significantly speeded up. Such an evolution is however only approximately unitary when the so-called SRG induced higher-body forces are omitted. We first explore the impact of the SRG evolution on the $Λ$ separation energies $B_Λ$ in $A=3-5$ hypernuclei when only SRG-evolved two-body and when both two- and three-body forces are included. For the latter scenario, we thoroughly study predictions of the two almost phase-equivalent NLO13 and NLO19 YN potentials for $A=4-7$ hypernuclei. The NLO19 interaction yields separation energies that are comparable with experiment, whereas NLO13 underestimates all the systems considered. We further explore CSB splittings in the $A=7,8$ multiplets employing the two NLO YN potentials that include also the leading CSB potential in the $Λ$N channel, whose strength has been fitted to the presently established CSB in $A=4$. Finally, we report on our recent study for $Ξ$ hypernuclei based on the $Ξ$N interaction at NLO.