论文标题

在steklov-robin特征值问题上

On a Steklov-Robin eigenvalue problem

论文作者

Gavitone, Nunzia, Sannipoli, Rossano

论文摘要

在本文中,我们研究了环形域中拉普拉斯的steklov-robin特征值问题。更确切地说,我们考虑$ω=ω_0\ setMinus \ edminus \ edline {b} _ {r} $,其中$ b_ {r} $是以radius $ r> 0 $和$ r> 0 $和$ω_0\ subset \ subset \ subset \ subbb {r}^n $,$ n $ nip的开放式的,geq 2 $ queq 2 $ queq 2 $ queq 2 $ nist,是一个以radius $ r> r> 0 $> r> r> r> 0 $> r> r> r> r> r> r> r> r> $ \ OVERLINE {B} _ {R} \ subsetω_0$。我们在外部边界上施加了steklov条件,在内部边界上涉及正$ l^{\ infty} $ - 函数$β(x)$的罗宾条件。然后,我们研究了第一个特征值$σ_β(ω)$及其主要特性。特别是,当我们让$ l^1 $ norm的$β$和内球半径变化时,我们研究了$σ_β(ω)$的行为。此外,我们研究当$β$是无穷大的积极参数时,相应本征函数的渐近行为。

In this paper we study a Steklov-Robin eigenvalue problem for the Laplacian in annular domains. More precisely, we consider $Ω=Ω_0 \setminus \overline{B}_{r}$, where $B_{r}$ is the ball centered at the origin with radius $r>0$ and $Ω_0\subset\mathbb{R}^n$, $n\geq 2$, is an open, bounded set with Lipschitz boundary, such that $\overline{B}_{r}\subset Ω_0$. We impose a Steklov condition on the outer boundary and a Robin condition involving a positive $L^{\infty}$-function $β(x)$ on the inner boundary. Then, we study the first eigenvalue $σ_β(Ω)$ and its main properties. In particular, we investigate the behaviour of $σ_β(Ω)$ when we let vary the $L^1$-norm of $β$ and the radius of the inner ball. Furthermore, we study the asymptotic behaviour of the corresponding eigenfunctions when $β$ is a positive parameter that goes to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源