论文标题
在光学晶格中可扩展多零件纠缠的功能构建块
Functional building blocks for scalable multipartite entanglement in optical lattices
论文作者
论文摘要
具有出色的连贯性和操作的可行性,具有光学晶格中的超低原子,构成了量子计算的竞争候选者。为此,在超级晶格中已经实现了大量的平行纠缠原子对。但是,更大的挑战是,由于缺乏对复古反射的双向超级晶格中局部原子旋转的操纵,因此要扩大和检测多部分纠缠。在这里,我们开发了一种基于跨角旋转依赖性超晶格的新体系结构,用于在与量子气显微镜中融合的适度分离原子上实现量子门层,以进行单原子操纵。我们通过将钟形对与$ 2 \ times4 $原子的一维链条和二维链条连接到一维的10个原子链和二维链条,从而为可扩展的多部分纠缠创建并验证了功能构建块。这为可扩展的量子计算和模拟提供了一个新的平台。
Featuring excellent coherence and operated parallelly, ultracold atoms in optical lattices form a competitive candidate for quantum computation. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale-up and detect multipartite entanglement due to the lack of manipulations over local atomic spins in retro-reflected bichromatic superlattices. Here we developed a new architecture based on a cross-angle spin-dependent superlattice for implementing layers of quantum gates over moderately-separated atoms incorporated with a quantum gas microscope for single-atom manipulation. We created and verified functional building blocks for scalable multipartite entanglement by connecting Bell pairs to one-dimensional 10-atom chains and two-dimensional plaquettes of $2\times4$ atoms. This offers a new platform towards scalable quantum computation and simulation.