论文标题

一些库仑分支的泊松支架

Poisson Brackets for some Coulomb Branches

论文作者

Gledhill, Kirsty, Hanany, Amihay

论文摘要

我们在运算符之间构建泊松支架关系,该操作员生成了某些$ 3D $ $ \ MATHCAL {n} = 4 $ Quiver Gauge理论的库仑分支的手性环。如果库仑分支是一个自由空间,$ ade $ klein奇异性或最小$ a_2 $ a_2 $ nilpotent轨道,我们会使用抽象库仑分支的继承属性在生成器之间明确计算生成器之间的泊松托架,或者在全球对称中使用这些操作员的预期电荷(通过使用Monopole的全球对称性)。我们还猜想了Higgs分支机构的泊松支架,这些支架起源于$ 6D $的理论,带有无张力的字符串或$ 5D $的理论,具有无数的Instantons,基于代表理论和操作员的内容约束,从其磁颤动的研究中知道了HWG,该理论是众所周知的。

We construct Poisson bracket relations between the operators which generate the chiral ring of the Coulomb branch of certain $3d$ $\mathcal{N}=4$ quiver gauge theories. In the case where the Coulomb branch is a free space, $ADE$ Klein singularity, or the minimal $A_2$ nilpotent orbit, we explicitly compute the Poisson brackets between the generators using either inherited properties of the abstract Coulomb branch variety, or the expected charges of these operators under the global symmetry (known through use of the monopole formula). We also conjecture Poisson brackets for Higgs branches that originate from $6d$ theories with tensionless strings or $5d$ theories with massless instantons for which the HWG is known, based on representation theoretic and operator content constraints known from the study of their magnetic quiver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源