论文标题

结构表示网络和不确定性反馈学习,以进行密集的不均匀雾除

Structure Representation Network and Uncertainty Feedback Learning for Dense Non-Uniform Fog Removal

论文作者

Jin, Yeying, Yan, Wending, Yang, Wenhan, Tan, Robby T.

论文摘要

很少有现有的图像融化或脱掩的方法考虑通常发生在烟,灰尘和雾中的密集和不均匀的粒子分布。处理这些致密和/或不均匀的分布可能会很棘手,因为雾的衰减和气光(或面纱效应)大大削弱了输入图像中的背景场景信息。为了解决这个问题,我们介绍了一个具有不确定性反馈学习的结构代表网络。具体而言,我们从预先训练的视觉变压器(Dino-Vit)模块中提取特征表示,以恢复背景信息。为了指导我们的网络专注于非均匀的雾区域,然后相应地去除雾,我们介绍了不确定性反馈学习,该学习产生了不确定性图,这些图形图具有较高的不确定性,在较密集的雾区域中具有较高的不确定性,并且可以被视为代表雾密度和不良分布的注意力图。基于不确定性图,我们的反馈网络可完善我们的融化输出。此外,为了处理估计大气浅色的棘手性,我们利用了输入图像的灰度版本,因为它受到输入图像中可能存在的浅色的影响较小。实验结果证明了我们方法在定量和质量上与处理密集和不均匀雾或烟雾的最新方法相比。

Few existing image defogging or dehazing methods consider dense and non-uniform particle distributions, which usually happen in smoke, dust and fog. Dealing with these dense and/or non-uniform distributions can be intractable, since fog's attenuation and airlight (or veiling effect) significantly weaken the background scene information in the input image. To address this problem, we introduce a structure-representation network with uncertainty feedback learning. Specifically, we extract the feature representations from a pre-trained Vision Transformer (DINO-ViT) module to recover the background information. To guide our network to focus on non-uniform fog areas, and then remove the fog accordingly, we introduce the uncertainty feedback learning, which produces the uncertainty maps, that have higher uncertainty in denser fog regions, and can be regarded as an attention map that represents fog's density and uneven distribution. Based on the uncertainty map, our feedback network refines our defogged output iteratively. Moreover, to handle the intractability of estimating the atmospheric light colors, we exploit the grayscale version of our input image, since it is less affected by varying light colors that are possibly present in the input image. The experimental results demonstrate the effectiveness of our method both quantitatively and qualitatively compared to the state-of-the-art methods in handling dense and non-uniform fog or smoke.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源