论文标题

KAZHDAN-LAUMON类别O,Braverman-Kazhdan Schwartz空间和半无限旗品种

Kazhdan-Laumon Category O, Braverman-Kazhdan Schwartz space, and the semi-infinite flag variety

论文作者

Morton-Ferguson, Calder

论文摘要

我们在Kazhdan和Laumon在基本仿射空间上的不良滑轮的胶合结构定义并研究了类别O的类似物。我们明确描述了此类别中的简单对象,并显示其线性化的Grothendieck组与Lusztig周期性Hecke模块的自然子模型同构。然后,我们通过表明Kazhdan-Laumon类别O等同于半偶然标志上适当定义的合适类别类别的类别,从而对这些结果进行分类。

We define and study an analogue of Category O in the context of Kazhdan and Laumon's gluing construction for perverse sheaves on the basic affine space. We explicitly describe the simple objects in this category, and we show its linearized Grothendieck group is isomorphic to a natural submodule of Lusztig's periodic Hecke module. We then provide a categorification of these results by showing that the Kazhdan-Laumon Category O is equivalent to a full subcategory of a suitably-defined category of perverse sheaves on the semi-infinite flag variety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源