论文标题
Auriga模拟中类似银河系的星系的恒星圆盘上的宇宙气体积聚历史 - (i)时间依赖性
Cosmological gas accretion history onto the stellar discs of Milky Way-like galaxies in the Auriga simulations -- (I) Temporal dependency
论文作者
论文摘要
我们使用AURIGA项目的30个模拟来估计流入,流出和净积聚速率对银河系状星系的光盘的时间依赖性。发现所有星系在早期的所有星系都相似,迅速增加至$ \ sim 10〜 \ mathrm {m} _ \ odot \,\ mathrm {yr}^{ - 1} $。然而,在进化的$ \ sim 6〜 \ mathrm {gyr} $之后,净积聚率是多种多样的:在大多数星系中,这些净值显示出指数状的衰减,但是有些系统却出现在直到当前时间的增加或近似恒定水平。对MW类似物的平均净积聚率的指数拟合得出的典型衰减时间尺度为$ 7.2〜 \ mathrm {gyr} $。流入率和流出速率的时间进化及其与圆盘中恒星形成速率(SFR)的关系的分析证实了这些数量之间的紧密联系。首先,流入$/ $流出比保持大致恒定,典型的值为$ \ dot {m} _ \ mathrm {out}/ \ dot {m} _ \ mathrm {in} \ sim 0.75 $,表明参与量的含量与25%相比,涉及的量较低。发现SFR $/$流入率比率有类似的行为,典型的值在0.1到0.3之间,并且流出速率$/$ SFR在$ 3.5 $ - $ 5.5 $的范围内变化。我们的结果表明,连续流入是圆盘星系中SFR水平的关键,并且恒星形成活动和圆盘中随后的反馈能够在圆盘 - 哈洛界面中产生质量负载的星系风。
We use the 30 simulations of the Auriga Project to estimate the temporal dependency of the inflow, outflow and net accretion rates onto the discs of Milky Way-like galaxies. The net accretion rates are found to be similar for all galaxies at early times, increasing rapidly up to $\sim 10~\mathrm{M}_\odot \, \mathrm{yr}^{-1}$. After $\sim 6~\mathrm{Gyr}$ of evolution, however, the net accretion rates are diverse: in most galaxies, these exhibit an exponential-like decay, but some systems instead present increasing or approximately constant levels up to the present time. An exponential fit to the net accretion rates averaged over the MW analogues yields typical decay time-scale of $7.2~\mathrm{Gyr}$. The analysis of the time-evolution of the inflow and outflow rates, and their relation to the star formation rate (SFR) in the discs, confirms the close connection between these quantities. First, the inflow$/$outflow ratio stays approximately constant, with typical values of $\dot{M}_\mathrm{out}/ \dot{M}_\mathrm{in} \sim 0.75$, indicating that the gas mass involved in outflows is of the order of 25% lower compared to that involved in inflows. A similar behaviour is found for the SFR$/$inflow rate ratio, with typical values between 0.1 and 0.3, and for the outflow rate$/$SFR which varies in the range $3.5$--$5.5$. Our results show that continuous inflow is key to the SFR levels in disc galaxies, and that the star formation activity and the subsequent feedback in the discs is able to produce mass-loaded galaxy winds in the disc-halo interface.