论文标题
超越最短路径:路径长度索引作为分布
Beyond the shortest path: the path length index as a distribution
论文作者
论文摘要
传统的复杂网络方法仅考虑从一个节点到另一个节点的最短路径,而不是考虑其他可能的路径。例如,这种限制在城市流动性研究中是重要的。在这份简短的报告中,作为第一步,我们提出了一种解决该问题的详尽方法,并表明我们可以超越最短的路径,但是我们不需要走那么远:我们提出了一个互动过程和早期的停止可能性。在图理论中提出了一些基本概念之后,我们提出了一个分析解决方案,用于计算完整图中两个节点之间可能路径的数量,以及一种深度有限的方法,以获取一般图中每对节点之间的所有可能路径(NP硬化问题)。我们不会将一对节点之间的路径长度分布分成标量数,而是查看分布本身 - 将所有路径提高到预定义的路径长度(考虑截断的分布),并显示该方法对最直接距离的基于距离的图形索引的影响:步行/路径长度。
The traditional complex network approach considers only the shortest paths from one node to another, not taking into account several other possible paths. This limitation is significant, for example, in urban mobility studies. In this short report, as the first steps, we present an exhaustive approach to address that problem and show we can go beyond the shortest path, but we do not need to go so far: we present an interactive procedure and an early stop possibility. After presenting some fundamental concepts in graph theory, we presented an analytical solution for the problem of counting the number of possible paths between two nodes in complete graphs, and a depth-limited approach to get all possible paths between each pair of nodes in a general graph (an NP-hard problem). We do not collapse the distribution of path lengths between a pair of nodes into a scalar number, we look at the distribution itself - taking all paths up to a pre-defined path length (considering a truncated distribution), and show the impact of that approach on the most straightforward distance-based graph index: the walk/path length.