论文标题
退化分数抛物线双曲线方程的dirichlet问题
Dirichlet Problem for Degenerate Fractional Parabolic Hyperbolic Equations
论文作者
论文摘要
我们在本文中关注的是在有限域中提出的退化分数扩散对流方程。由于合适的公式,我们显示了可测量和有界初始和迪里奇边界数据的弱熵解决方案的存在。此外,我们证明了通过抛物线扰动获得的弱熵解决方案的$ L^1- $类型收缩属性。这是一个弱选择原则,这意味着弱熵解决方案在此类中是稳定的。
We are concerned in this paper with the degenerate fractional diffusion advection equations posed in bounded domains. Due to a suitable formulation, we show the existence of weak entropy solutions for measurable and bounded initial and Dirichlet boundary data. Moreover, we prove a $L^1-$type contraction property for weak entropy solutions obtained via parabolic perturbation. This is a weak selection principle which means that the weak entropy solutions are stable in this class.