论文标题

关于n可分别阳性确定功能的注释

A note on n-divisible positive definite functions

论文作者

Norvidas, Saulius

论文摘要

令$ pd(\ mathbb {r})$为$ \ mathbb {r} $的连续正定功能的家族。对于整数$ n> 1 $,如果pd(\ mathbb {r})中有$ g \,则称为$ n $ -Divisible,a $ f \ in Pd(\ Mathbb {r})$称为$ n $ -Divisible。无限分区和$ n $ - 可分布的功能的某些属性在本质上可能有所不同。的确,如果$ f $是无限的,那么对于每个整数$ n> 1 $,就有一个唯一的$ g $,因此$ g^n = f $,但是有一个$ n $ divisible $ f $,使得$ g^n = f $的因子$ g $通常不是唯一的。在本文中,我们讨论了Pd(\ Mathbb {r})的类$ \ {g \ for $ n = f \} $的类别,$ n $ -divisible $ f \ in Pd(\ mathbb {r})$中的$ n = f \} $,并获得此类持卡性的精确估计。

Let $PD(\mathbb{R})$ be the family of continuous positive definite functions on $\mathbb{R}$. For an integer $n>1$, a $f\in PD(\mathbb{R})$ is called $n$-divisible if there is $g\in PD(\mathbb{R})$ such that $g^n=f$. Some properties of infinite-divisible and $n$-divisible functions may differ in essence. Indeed, if $f$ is infinite-divisible, then for each integer $n>1$, there is an unique $g$ such that $g^n=f$, but there is a $n$-divisible $f$ such that the factor $g$ in $g^n=f$ is generally not unique. In this paper, we discuss about how rich can be the class $\{g\in PD(\mathbb{R}): g^n=f\}$ for $n$-divisible $f\in PD(\mathbb{R})$ and obtain precise estimate for the cardinality of this class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源