论文标题
基于截断错误的各向异性$ p $ - 适用于高阶不连续的盖尔金方法的不稳定流量
Truncation Error-Based Anisotropic $p$-Adaptation for Unsteady Flows for High-Order Discontinuous Galerkin Methods
论文作者
论文摘要
在这项工作中,我们将$τ$估计方法扩展到不稳定的问题,并使用它来调整多项式程度,以适应不稳定流的高阶不连续的Galerkin模拟。适应性是局部和各向异性的,并允许捕获相关的非稳态流特征,同时增强了时间不断发展的功能的准确性(例如,升力,拖动)。为了达到有效且不稳定的截断$ P $ - 适应方案,我们首先重新审视截断误差的定义,研究了由时间术语引起的质量矩阵处理的效果。其次,我们将$τ$估计策略扩展到不稳定的问题。最后,我们介绍并比较了不稳定问题的两种适应策略:动态和静态$ p $ - 适应方法。在第一个(动态)中,在模拟期间定期测量误差,并且在每个估计过程后立即对多项式度进行调整。在第二个(静态)中,该误差也会定期测量,但是使用周期性误差度量的组合,在几个估计阶段后仅执行一个$ p $ - 适应过程。静态$ p $ - 适应策略适用于时间周期流,而动态的流量可以推广到任何流动的演变。 我们考虑两个测试案例,以评估拟议的$ P $适应策略的效率。第一个考虑可压缩的Euler方程来模拟密度脉冲的对流。第二个求解可压缩的Navier-Stokes方程,以在RE = 100时模拟气缸周围的流动。局部和各向异性适应可以大大减少相对于统一的精致程度的自由度数量,从而导致Euler Test案例的速度高达$ \ times 4.5 $,而Navier-Stokes stokes stockes测试案例的$ \ times 2.2 $。
In this work, we extend the $τ$-estimation method to unsteady problems and use it to adapt the polynomial degree for high-order discontinuous Galerkin simulations of unsteady flows. The adaptation is local and anisotropic and allows capturing relevant unsteady flow features while enhancing the accuracy of time evolving functionals (e.g., lift, drag). To achieve an efficient and unsteady truncation error-based $p$-adaptation scheme, we first revisit the definition of the truncation error, studying the effect of the treatment of the mass matrix arising from the temporal term. Secondly, we extend the $τ$-estimation strategy to unsteady problems. Finally, we present and compare two adaptation strategies for unsteady problems: the dynamic and static $p$-adaptation methods. In the first one (dynamic) the error is measured periodically during a simulation and the polynomial degree is adapted immediately after every estimation procedure. In the second one (static) the error is also measured periodically, but only one $p$-adaptation process is performed after several estimation stages, using a combination of the periodic error measures. The static $p$-adaptation strategy is suitable for time-periodic flows, while the dynamic one can be generalized to any flow evolution. We consider two test cases to evaluate the efficiency of the proposed $p$-adaptation strategies. The first one considers the compressible Euler equations to simulate the advection of a density pulse. The second one solves the compressible Navier-Stokes equations to simulate the flow around a cylinder at Re=100. The local and anisotropic adaptation enables significant reductions in the number of degrees of freedom with respect to uniform refinement, leading to speed-ups of up to $\times4.5$ for the Euler test case and $\times2.2$ for the Navier-Stokes test case.