论文标题

随机递归度量空间的深度

Depths in random recursive metric spaces

论文作者

Desmarais, Colin

论文摘要

作为随机递归树和优先附着树的概括,我们考虑随机递归度量空间。这些空间是由随机块构造的,每个块都是一个设有概率度量的公制空间,其中包含一个称为钩子的标记点,并分配了一个重量。随机递归度量空间配备了一个概率度量,由分配给其组成块的概率度量的加权总和组成。在随机递归度量空间的生长的每个步骤中,根据装备的概率度量随机选择一个称为闩锁的点,并通过将新块随机选择一个新块,并通过将块的闩锁和块的钩子连接在一起。我们使用Martingale理论来证明大量法律和插入深度的中心限制定理。从主钩到所选闩锁的距离。我们还将结果应用于随机树,挂钩网络以及从线段构建的连续空间的进一步概括。

As a generalization of random recursive trees and preferential attachment trees, we consider random recursive metric spaces. These spaces are constructed from random blocks, each a metric space equipped with a probability measure, containing a labelled point called a hook, and assigned a weight. Random recursive metric spaces are equipped with a probability measure made up of a weighted sum of the probability measures assigned to its constituent blocks. At each step in the growth of a random recursive metric space, a point called a latch is chosen at random according to the equipped probability measure and a new block is chosen at random and attached to the space by joining together the latch and the hook of the block. We use martingale theory to prove a law of large numbers and a central limit theorem for the insertion depth; the distance from the master hook to the latch chosen. We also apply our results to further generalizations of random trees, hooking networks, and continuous spaces constructed from line segments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源