论文标题

通过沉浸冷却在超导电路中的量子浴抑制

Quantum bath suppression in a superconducting circuit by immersion cooling

论文作者

Lucas, M., Danilov, A. V., Levitin, L. V., Jayaraman, A., Casey, A. J., Faoro, L., Tzalenchuk, A. Ya., Kubatkin, S. E., Saunders, J., de Graaf, S. E.

论文摘要

量子电路通过几个依赖温度的自由度与环境相互作用。然而,迄今为止的多个实验表明,超导设备的大多数特性似乎以$ t \ 50 $ MK的高度平稳 - 远高于冰箱碱温度。例如,这反映在量子位的热状态种群中,数量过多,表面旋转极化 - 导致相干性降低的因素。我们通过操作浸入液体$^3 $ HE的电路来演示如何消除这种热约束。这样可以有效冷却超导谐振器的破裂环境,并且我们看到测得的物理量持续变化为先前未探索的亚MK温度。 $^3 $他充当散热器,增加了量子浴的能量放松速率,连接到电路上千倍,但是被抑制的浴室不会引入其他电路损失或噪音。这种量子浴抑制可以降低量子电路中的变质,并为量子处理器中的热和相干管理打开途径。

Quantum circuits interact with the environment via several temperature-dependent degrees of freedom. Yet, multiple experiments to-date have shown that most properties of superconducting devices appear to plateau out at $T\approx 50$ mK -- far above the refrigerator base temperature. This is for example reflected in the thermal state population of qubits, in excess numbers of quasiparticles, and polarisation of surface spins -- factors contributing to reduced coherence. We demonstrate how to remove this thermal constraint by operating a circuit immersed in liquid $^3$He. This allows to efficiently cool the decohering environment of a superconducting resonator, and we see a continuous change in measured physical quantities down to previously unexplored sub-mK temperatures. The $^3$He acts as a heat sink which increases the energy relaxation rate of the quantum bath coupled to the circuit a thousand times, yet the suppressed bath does not introduce additional circuit losses or noise. Such quantum bath suppression can reduce decoherence in quantum circuits and opens a route for both thermal and coherence management in quantum processors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源